8 resultados para Darkness

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The workers of the stingless bee, Melipona quadrifasciata, assume different tasks during their adult life. Newly emerged individuals remain inside the nest, without contact with the external environment. Maturing workers go to more peripheral regions and only the oldest, the foragers, leave the nest. As this diversity of activities implies different metabolic patterns, oxygen consumption has been measured in workers of three different ages: 24-48 h (nurses), 10-15 days (builders), and older than 25 days (foragers). Oxygen consumption of individually isolated workers was determined by intermittent respirometry, under constant darkness and temperature of 25 +/- 1 degrees C. Sets of 24-h measurements were obtained from individuals belonging to each of the three worker groups. Rhythmicity has been assessed in the daily (24 h) and ultradian (5-14 h) domains. This experimental design allowed detection of endogenous rhythms without the influence of the social group and without inflicting stress on the individuals, as would be caused by their longer isolation from the colony. Significant 24-h rhythms in oxygen consumption were present in nurses, builders and foragers; therefore, workers are rhythmic from the age of 24-48 h. However, the amplitude of the circadian rhythm changed according to age: nurses showed the lowest values, while foragers consistently presented the largest ones, about ten times larger than the amplitude of nurses` respiratory rhythm. Ultradian frequencies were detected for all worker groups, the power and frequencies of which varied little with age. This means that the ultradian strength was relatively larger in nurses and apparently maintains some relationship with the queen`s oviposition episodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present status and future progress of the mechanisms of persistent luminescence are critically treated with the present knowledge. The advantages to be achieved by a further need as well as the pitfalls of the excessive use of imagination are shown. As usual, in the beginning of the present era of persistent luminescence since the mid 1990s, the imagination played a more important role than the sparse solid experimental data and the chemical common sense and knowledge was largely ignored. Since some five years, the mechanistic studies seem to have reached the maturity and - perhaps deceivingly - it seems that there are only details to be solved. However, the development of red emitting nanocrystalline materials poses a challenge also to the more fundamental studies and interpretation. The questions still luring in the darkness include the problems how the increased surface area affects the defect structure and how the "persistent energy transfer" really works. There is still some light to be thrown onto these matters starting with agreeing on the terminology: the term phosphorescence should be abandoned altogether. The long lifetime of persistent luminescence is due to trapping of excitation energy, not to the forbidden nature of the luminescent transition. However, the technically well-suited term "afterglow" should be retained for harmful, short persistent luminescence. (C) 2012 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subterranean organisms are excellent models for chronobiological studies, yet relatively few taxa have been investigated with this focus. Former results were interpreted as a pattern of regression of circadian locomotor activity rhythms in troglobitic (exclusively subterranean) species. In this paper we report results of experiments with cave fishes showing variable degrees of troglomorphism (reduction of eyes, melanic pigmentation and other specializations related to the hypogean life) submitted to light-dark cycles, preceded and followed by several days in constant darkness. Samples from seven species have been monitored in our laboratory for the detection of significant circadian rhythms in locomotor activity: S. typhlops, an extremely troglomophic species, presented the lowest number of significant components in the circadian range (only one individual out of eight in DD1 and three other fish in LD), all weak (low values of spectral power). Higher incidence of circadian components was observed for P. kronei - only one among six studied catfish without significant circadian rhythms under DD1 and DD2; spectral powers were generally high. Intermediate situations were observed for the remaining species, however all of them presented relatively strong significant rhythms under LD. Residual oscillations (circadian rhythms in DD2) were detected in at least part of the studied individuals of all species but S. typhlops, without a correlation with spectral powers of LD rhythms, i.e., individuals exhibiting residual oscillations were not necessarily those with the strongest LD rhythms. In conclusion, the accumulated evidence for troglobitic fishes strongly supports the hypothesis of external, environmental selection for circadian locomotor rhythms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To understand the effect of summer and winter on the relationships between leaf carbohydrate and photosynthesis in citrus trees growing in subtropical conditions, 'Valencia' orange trees were subjected to external manipulation of their carbohydrate concentration by exposing them to darkness and evaluating the maximal photosynthetic capacity. In addition, the relationships between carbohydrate and photosynthesis in the citrus leaves were studied under natural conditions. Exposing the leaves to dark conditions decreased the carbohydrate concentration and increased photosynthesis in both seasons, which is in accordance with the current model of carbohydrate regulation. Significant negative correlations were found between total non-structural carbohydrates and photosynthesis in both seasons. However, non-reducing sugars were the most important carbohydrate that apparently regulated photosynthesis on a typical summer day, whereas starch was important on a typical winter day. As a novelty, photosynthesis stimulation by carbohydrate consumption was approximately three times higher during the summer, i.e. the growing season. Under subtropical conditions, citrus leaves exhibited relatively high photosynthesis and high carbohydrate levels on the summer day, as well as a high nocturnal consumption of starch and soluble sugars. A positive association was determined between photosynthesis and photoassimilate consumption/exportation, even in leaves showing a high carbohydrate concentration. This paper provides evidence that photosynthesis in citrus leaves is regulated by an increase in sink demand rather than by the absolute carbohydrate concentration in leaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

South American subterranean rodents (Ctenomys aff. knighti), commonly known as tuco-tucos, display nocturnal, wheel-running behavior under light-dark (LD) conditions, and free-running periods >24 h in constant darkness (DD). However, several reports in the field suggested that a substantial amount of activity occurs during daylight hours, leading us to question whether circadian entrainment in the laboratory accurately reflects behavior in natural conditions. We compared circadian patterns of locomotor activity in DD of animals previously entrained to full laboratory LD cycles (LD12:12) with those of animals that were trapped directly from the field. In both cases, activity onsets in DD immediately reflected the previous dark onset or sundown. Furthermore, freerunning periods upon release into DD were close to 24 h indicating aftereffects of prior entrainment, similarly in both conditions. No difference was detected in the phase of activity measured with and without access to a running wheel. However, when individuals were observed continuously during daylight hours in a semi-natural enclosure, they emerged above-ground on a daily basis. These day-time activities consisted of foraging and burrow maintenance, suggesting that the designation of this species as nocturnal might be inaccurate in the field. Our study of a solitary subterranean species suggests that the circadian clock is entrained similarly under field and laboratory conditions and that day-time activity expressed only in the field is required for foraging and may not be time-dictated by the circadian pacemaker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells, subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.