3 resultados para Damage Identification

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper is presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recurrent chromosomal translocations underlie both haematopoietic and solid tumours. Their origin has been ascribed to selection of random rearrangements, targeted DNA damage, or frequent nuclear interactions between translocation partners; however, the relative contribution of each of these elements has not been measured directly or on a large scale. Here we examine the role of nuclear architecture and frequency of DNA damage in the genesis of chromosomal translocations by measuring these parameters simultaneously in cultured mouse B lymphocytes. In the absence of recurrent DNA damage, translocations between Igh or Myc and all other genes are directly related to their contact frequency. Conversely, translocations associated with recurrent site-directed DNA damage are proportional to the rate of DNA break formation, as measured by replication protein A accumulation at the site of damage. Thus, non-targeted rearrangements reflect nuclear organization whereas DNA break formation governs the location and frequency of recurrent translocations, including those driving B-cell malignancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently showed that oxadiazoles have anti-Trypanosoma cruzi activity at micromolar concentrations. These compounds are easy to synthesize and show a number of clear and interpretable structure-activity relationships (SAR), features that make them attractive to pursue potency enhancement. We present here the structural design, synthesis, and anti-T. cruzi evaluation of new oxadiazoles denoted 5a-h and 6a-h. The design of these compounds was based on a previous model of computational docking of oxadiazoles on the T. cruzi protease cruzain. We tested the ability of these compounds to inhibit catalytic activity of cruzain, but we found no correlation between the enzyme inhibition and the antiparasitic activity of the compounds. However, we found reliable SAR data when we tested these compounds against the whole parasite. While none of these oxadiazoles showed toxicity for mammalian cells, oxadiazoles 6c (fluorine), 6d (chlorine), and 6e (bromine) reduced epimastigote proliferation and were cidal for trypomastigotes of T. cruzi Y strain. Oxadiazoles 6c and 6d have IC50 of 9.5 +/- 2.8 and 3.5 +/- 1.8 mu M for trypomastigotes, while Benznidazole, which is the currently used drug for Chagas disease treatment, showed an IC50 of 11.3 +/- 2.8 mu M. Compounds 6c and 6d impair trypomastigote development and invasion in macrophages, and also induce ultrastructural alterations in trypomastigotes. Finally, compound 6d given orally at 50 mg/kg substantially reduces the parasitemia in T. cruzi-infected BALB/c mice. Our drug design resulted in potency enhancement of oxadiazoles as anti-Chagas disease agents, and culminated with the identification of oxadiazole 6d, a trypanosomicidal compound in an animal model of infection. (C) 2012 Elsevier Ltd. All rights reserved.