4 resultados para DRG- hinnoittelu

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The neural mobilization technique is a noninvasive method that has proved clinically effective in reducing pain sensitivity and consequently in improving quality of life after neuropathic pain. The present study examined the effects of neural mobilization (NM) on pain sensitivity induced by chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted thereafter to 10 sessions of NM, each other day, starting 14 days after the CCI injury. Over the treatment period, animals were evaluated for nociception using behavioral tests, such as tests for allodynia and thermal and mechanical hyperalgesia. At the end of the sessions, the dorsal root ganglion (DRG) and spinal cord were analyzed using immunohistochemistry and Western blot assays for neural growth factor (NGF) and glial fibrillary acidic protein (GFAP). Results: The NM treatment induced an early reduction (from the second session) of the hyperalgesia and allodynia in CCI-injured rats, which persisted until the end of the treatment. On the other hand, only after the 4th session we observed a blockade of thermal sensitivity. Regarding cellular changes, we observed a decrease of GFAP and NGF expression after NM in the ipsilateral DRG (68% and 111%, respectively) and the decrease of only GFAP expression after NM in the lumbar spinal cord (L3-L6) (108%). Conclusions: These data provide evidence that NM treatment reverses pain symptoms in CCI-injured rats and suggest the involvement of glial cells and NGF in such an effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral mu-opioid receptor (MOR) activation are able to direct block PGE(2)-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE(2)-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated. Results: Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE(2)-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3K gamma/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3K gamma null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3K gamma (congruent to 43%). Conclusions: The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3K gamma/AKT signaling. This study extends a previously study of our group suggesting that PI3K gamma/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The symptoms of lumbar disc herniation, such as low back pain and sciatica, have been associated with local release of cytokines following the inflammatory process induced by the contact of the nucleus pulposus (NP) with the spinal nerve. Using an animal experimental model of intervertebral disc herniation and behavioral tests to evaluate mechanical (electronic von Frey test) and thermal (Hargreaves Plantar test) hyperalgesia in the hind paw of rats submitted to the surgical model, this study aimed to detect in normal intervertebral disc the cytokines known to be involved in the mechanisms of inflammatory hyperalgesia, to observe if previous exposure of the intervertebral disc tissue to specific antibodies could affect the pain behavior (mechanical and thermal hyperalgesia) induced by the NP, and to observe the influence of the time of contact of the NP with the fifth lumbar dorsal root ganglion (L5-DRG) in the mechanical and thermal hyperalgesia. The cytokines present at highest concentrations in the rat NP were TNF-alpha, IL-1 beta and CINC-1. Rats submitted to the disc herniation experimental model, in which a NP from the sacrococcygeal region is deposited over the right L5-DRG, showed increased mechanical and thermal hyperalgesia that lasted at least 7 weeks. When the autologous NP was treated with antibodies against the three cytokines found at highest concentrations in the NP (TNF-alpha, IL-1 beta and CINC-1), there was decrease in both mechanical and thermal hyperalgesia in different time points, suggesting that each cytokine may be important for the hyperalgesia in different steps of the inflammatory process. The surgical remotion of the NP from herniated rats 1 week after the implantation reduced the hyperalgesia to the level similar to the control group. This reduction in the hyperalgesia was also observed in the group that had the NP removed 3 weeks after the implantation, although the intensity of the hyperalgesia did not decreased totally. The removal of the NP after 5 weeks did not changed the hyperalgesia observed in the hind paw, which suggests that the longer the contact of the NP with the DRG, the greater is the possibility of development of chronic pain. Together our results indicate that specific cytokines released during the inflammatory process induced by the herniated intervertebral disc play fundamental role in the development of the two modalities of hyperalgesia (mechanical and thermal) and that the maintenance of this inflammation may be the most important point for the chronification of the pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral μ-opioid receptor (MOR) activation are able to direct block PGE2-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE2-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated. Results Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE2-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3Kγ/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3Kγ null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3Kγ (≅ 43%). Conclusions The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3Kγ/AKT signaling. This study extends a previously study of our group suggesting that PI3Kγ/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.