10 resultados para DNA DOUBLE HELIX

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chk1 both arrests replication forks and enhances repair of DNA damage by phosphorylating downstream effectors. Although there has been a concerted effort to identify effectors of Chk1 activity, underlying mechanisms of effector action are still being identified. Metnase (also called SETMAR) is a SET and transposase domain protein that promotes both DNA double-strand break (DSB) repair and restart of stalled replication forks. In this study, we show that Metnase is phosphorylated only on Ser495 (S495) in vivo in response to DNA damage by ionizing radiation. Chk1 is the major mediator of this phosphorylation event. We had previously shown that wild-type (wt) Metnase associates with chromatin near DSBs and methylates histone H3 Lys36. Here we show that a Ser495Ala (S495A) Metnase mutant, which is not phosphorylated by Chk1, is defective in DSB-induced chromatin association. The S495A mutant also fails to enhance repair of an induced DSB when compared with wt Metnase. Interestingly, the S495A mutant demonstrated increased restart of stalled replication forks compared with wt Metnase. Thus, phosphorylation of Metnase S495 differentiates between these two functions, enhancing DSB repair and repressing replication fork restart. In summary, these data lend insight into the mechanism by which Chk1 enhances repair of DNA damage while at the same time repressing stalled replication fork restart. Oncogene (2012) 31, 4245-4254; doi:10.1038/onc.2011.586; published online 9 January 2012

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chromosomal translocations require formation and joining of DNA double strand breaks (DSBs). These events disrupt the integrity of the genome and are involved in producing leukemias, lymphomas and sarcomas. Translocations are frequent, clonal and recurrent in mature B cell lymphomas, which bear a particularly high DNA damage burden by virtue of activation-induced cytidine deaminase (AID) expression. Despite the ubiquity of genomic rearrangements, the forces that underlie their genesis are not well understood. Here, we provide a detailed description of a new method for studying these events, translocation capture sequencing (TC-Seq). TC-Seq provides the means to document chromosomal rearrangements genome-wide in primary cells, and to discover recombination hotspots. Demonstrating its effectiveness, we successfully estimate the frequency of c-myc/IgH translocations in primary B cells, and identify hotspots of AID-mediated recombination. Furthermore. TC-Seq can be adapted to generate genome-wide rearrangement maps in any cell type and under any condition. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double-stranded pBS plasmid DNA was irradiated with gamma rays at doses ranging from 1 to 12 kGy and electron beams from 1 to 10 kGy. Fragment-size distributions were determined by direct visualization, using atomic force microscopy with nanometer-resolution operating in non-tapping mode, combined with an improved methodology. The fragment distributions from irradiation with gamma rays revealed discrete-like patterns at all doses, suggesting that these patterns are modulated by the base pair composition of the plasmid. Irradiation with electron beams, at very high dose rates, generated continuous distributions of highly shattered DNA fragments, similar to results at much lower dose rates found in the literature. Altogether, these results indicate that AFM could supplement traditional methods for high-resolution measurements of radiation damage to DNA, while providing new and relevant information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crotamine, a 42-residue polypeptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, has been shown to be a cell-penetrating protein that targets chromosomes, carries plasmid DNA into cells, and shows specificity for actively proliferating cells. Given this potential role as a nucleic acid-delivery vector, we have studied in detail the binding of crotamine to single- and double-stranded DNAs of different lengths and base compositions over a range of ionic conditions. Agarose gel electrophoresis and ultraviolet spectrophotometry analysis indicate that complexes of crotamine with long-chain DNAs readily aggregate and precipitate at low ionic strength. This aggregation, which may be important for cellular uptake of DNA, becomes less likely with shorter chain length. 25-mer oligonucleotides do not show any evidence of such aggregation, permitting the determination of affinities and size via fluorescence quenching experiments. The polypeptide binds non-cooperatively to DNA, covering about 5 nucleotide residues when it binds to single (ss) or (ds) double stranded molecules. The affinities of the protein for ss-vs. ds-DNA are comparable, and inversely proportional to salt levels. Analysis of the dependence of affinity on [NaCl] indicates that there are a maximum of,3 ionic interactions between the protein and DNA, with some of the binding affinity attributable to non-ionic interactions. Inspection of the three-dimensional structure of the protein suggests that residues 31 to 35, Arg-Trp-Arg-Trp-Lys, could serve as a potential DNA-binding site. A hexapeptide containing this sequence displayed a lower DNA binding affinity and salt dependence as compared to the full-length protein, likely indicative of a more suitable 3D structure and the presence of accessory binding sites in the native crotamine. Taken together, the data presented here describing crotamine-DNA interactions may lend support to the design of more effective nucleic acid drug delivery vehicles which take advantage of crotamine as a carrier with specificity for actively proliferating cells. Citation: Chen P-C, Hayashi MAF, Oliveira EB, Karpel RL (2012) DNA-Interactive Properties of Crotamine, a Cell-Penetrating Polypeptide and a Potential Drug Carrier. PLoS ONE 7(11): e48913. doi:10.1371/journal.pone.0048913

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ELECTROCHEMICAL AND CALORIMETRIC INVESTIGATION OF INTERACTION OF NOVEL BISCATIONIC ANTICANCER AGENTS WITH DNA. Biscationic amidines bind in the DNA minor groove and present biological activity against a range of infectious diseases. Two new biscationic compounds (bis-alpha,omega-S-thioureido, amino and sulfide analogues) were synthesized in good yields and fully characterized, and their interaction with DNA was also investigated. Isothermal titration calorimetry (ITC) was used to measure the thermodynamic properties of binding interactions between DNA and these ligands. A double stranded calf thymus DNA immobilized on an electrode surface was used to study the possible DNA-interacting abilities of these compounds towards dsDNA in situ. A remarkable interaction of these compounds with DNA was demonstrated and their potential application as anticancer agents was furthered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gene XRCC3 (X-ray cross complementing group 3) has the task of repairing damage that occurs when there is recombination between homologous chromosomes. Repair of recombination between homologous chromosomes plays an important role in maintaining genome integrity, although it is known that double-strand breaks are the main inducers of chromosomal aberrations. Changes in the XRCC3 protein lead to an increase in errors in chromosome segregation due to defects in centrosomes, resulting in aneuploidy and other chromosomal aberrations, such as small increases in telomeres. We examined XRCC3 Thr241Met polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. The individuals of the control group (N = 100) were selected from the general population of the Sao Paulo State. Odds ratio and 95%CI were calculated using a logistic regression model. Patients who had the allele Met of the XRCC3 Thr241Met polymorphism had a significantly increased risk of tumor development (odds ratio = 3.13; 95% confidence interval = 1.50-6.50). There were no significant differences in overall survival of patients. We suggest that XRCC3 Thr241Met polymorphism is involved in susceptibility for developing astrocytomas and glioblastomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have prepared a DNA-mimicry of nucleosides in which the anti-HIV drug lamivudine (beta-L-2',3'-dideoxy-3'-thiacytidine, 3TC) self-assembles into a base-paired and helically base-stacked hexagonal structure. Face-to-face and face-to-tail stacked 3TC=3TC dimers base-paired through two hydrogen bonds between neutral cytosines by either N-H center dot center dot center dot O or N-H center dot center dot center dot N atoms give rise to a right-handed DNA-mimicry of lamivudine with an unusual highly symmetric hexagonal lattice and topology. In addition, a base-paired and base-stacked supramolecular architecture of lamivudine hemihydrochloride hemihydrate was also obtained as a result of our crystal screenings. This structure is formed through partially face-to-face stacked lamivudine pairs held together by protonated and neutral fragments. However, no helical stacking occurs in this structure in which lamivudine also adopts unusual conformations as the C1'-endo and C1'-exo sugar puckers and cytosine orientations intermediate between the anti and syn conformations. As a conclusion drawn from the nucleoside duplex, the hexagonal DNA-mimicry of lamivudine reveals that such double-stranded helices can be assembled without counterions and organic solvents but with higher crystallographic symmetry instead, because only water crystallizes together with lamivudine in this structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Persistent harmful scenarios associated with disposal of radioactive waste, high-background radiation areas and severe nuclear accidents are of great concern regarding consequences to both human health and the environment. Of particular concern is the extracellular DNA in aquatic environments contaminated by radiological substances. Strand breaks induced by radiation promote decrease in the transformation efficiency for extracellular DNA. The focus of this study is the quantification of DNA damage following long-term exposure (over one year) to low doses of natural uranium (an alpha particle emitter) to simulate natural conditions, since nothing is known about alpha radiation induced damage to extracellular DNA. A high-resolution Atomic Force Microscope was used to evaluate DNA fragments. Double-stranded plasmid pBS as a model for extracellular DNA was exposed to different amounts of natural uranium. It was demonstrated that low concentrations of U in water (50 to 150 ppm) produce appreciable numbers of double strand breaks, scaling with the square of the average doses. The importance of these findings for environment monitoring of radiological pollution is addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to entrap drugs within vehicles and subsequently release them has led to new treatments for a number of diseases. Based on an associative phase separation and interfacial diffusion approach, we developed a way to prepare DNA gel particles without adding any kind of cross-linker or organic solvent. Among the various agents studied, cationic surfactants offered particularly efficient control for encapsulation and DNA release from these DNA gel particles. The driving force for this strong association is the electrostatic interaction between the two components, as induced by the entropic increase due to the release of the respective counter-ions. However, little is known about the influence of the respective counter-ions on this surfactant-DNA interaction. Here we examined the effect of different counter-ions on the formation and properties of the DNA gel particles by mixing DNA (either single-(ssDNA) or double-stranded (dsDNA)) with the single chain surfactant dodecyltrimethylammonium (DTA). In particular, we used as counter-ions of this surfactant the hydrogen sulfate and trifluoromethane sulfonate anions and the two halides, chloride and bromide. Effects on the morphology of the particles obtained, the encapsulation of DNA and its release, as well as the haemocompatibility of these particles are presented, using counter-ion structure and DNA conformation as controlling parameters. Analysis of the data indicates that the degree of counter-ion dissociation from the surfactant micelles and the polar/hydrophobic character of the counter-ion are important parameters in the final properties of the particles. The stronger interaction with amphiphiles for ssDNA than for dsDNA suggests the important role of hydrophobic interactions in DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biscationic amidines bind in the DNA minor groove and present biological activity against a range of infectious diseases. Two new biscationic compounds (bis-α,ω-S-thioureido, amino and sulfide analogues) were synthesized in good yields and fully characterized, and their interaction with DNA was also investigated. Isothermal titration calorimetry (ITC) was used to measure the thermodynamic properties of binding interactions between DNA and these ligands. A double stranded calf thymus DNA immobilized on an electrode surface was used to study the possible DNA-interacting abilities of these compounds towards dsDNA in situ. A remarkable interaction of these compounds with DNA was demonstrated and their potential application as anticancer agents was furthered.