13 resultados para DISSOLVED NUTRIENTS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The potential of the red alga Kappaphycus alvarezii to remove nutrients was tested to treat effluents of Trachinotus carolinus fish cultivation, and the production of carrageenan in this condition was analyzed. Experiments were conducted in four tanks of 8000 L with approximately 1200 fishes of 30 g each integrated with three tanks of 100 L with 700 g of K. alvarezii, as initial biomass per tank. Seawater was re-circulated between tanks with seaweed and with fish. As a control, three tanks with seawater circulating in an open system were utilized. Seawater samples were collected daily for 10 days and concentrations of nitrate, nitrite, ammonium and phosphate were determined in the inflow and outflow water of the tanks. Significant differences between both collecting points were considered as nutrient removal by the seaweed. Growth rates and carrageenan yields were also analyzed in seaweed cultivated in seawater and in effluents. Growth rates of seaweed cultivated in tanks were lower than those obtained in open sea and in laboratory cultivation. Effluents had concentrations of nitrate and nitrite ca. 100 times higher than in the control. Maximum values of nutrient removal on effluents were: nitrate= 18.2%; nitrite =50.8%; ammonium =70.5% and phosphate =26.8%. All plants survived throughout the experimental period, but some developed ""ice-ice"", a disease associated with physiological stress. After the experimental period, some plants selected and cultivated in open sea presented higher growth rates in 40 days, indicating nutrient storage. No significant differences between carrageenan yields of K alvarezii cultivated in seawater and in the effluents were observed. Our results show that K. alvarezii can be utilized as a biofilter for fish cultivation effluents, reducing the eutrophication process and can also be processed for carrageenan production, which provides an additional benefit to the fisheries. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receiving coastal waters and estuaries are among the most nutrient-enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast-growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low- to high-nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high delta 15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates, and growth efficiencies were studied in the Northern region of the Cananeia-Iguape estuarine system, which has recently experienced an intense eutrophication due to anthropogenic causes. Two surveys were carried out during spring and neap tide periods of the dry season of 2005 and the rainy season of 2006. This region receives large freshwater inputs with organic seston and phosphate concentrations that reach as high as 1.0 mg l(-1) and 20.0 mu M, respectively. Strong decreasing gradients of seston and dissolved inorganic nutrients were observed from the river/estuary boundary to the estuary/coastal interface. Gradients were also observed in phytoplankton and bacterial production rates. The production rates of phytoplankton were 5.6-fold higher (mean 8.5 mu g Cl(-1) h(-1)) during the dry season. Primary production rates (PP) positively correlated with salinity and euphoric depth, indicating that phytoplankton productivity was light-limited. On the other hand, bacterial biomass (BB) and production rates (BP) were 1.9- and 3.7-fold higher, respectively, during the rainy season, with mean values of up to 40.4 mu g Cl(-1) and 7.9 mu g Cl(-1) h-1, respectively. Despite such a high BP, bacterial abundance remained <2 x 106 cells ml(-1), indicating that bacterial production and removal were coupled. Mean specific growth rates ranged between 0.9 and 5.5 d(-1). BP was inversely correlated with salinity and positively correlated with temperature, organic matter, exopolymer particles, and particulate-attached bacteria; this last accounted for as much as 89.6% of the total abundance. During the rainy season, BP was generally much higher than PP, and values of BP/PP > 20 were registered during high freshwater input, suggesting that under these conditions, bacterial activity was predominantly supported by allochthonous inputs of organic carbon. In addition, BB probably represented the main pathway for the synthesis of high-quality (low C:N) biomass that may have been available to the heterotrophic components of the plankton food web, particularly nanoheterotrophs. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical aspects of the Subtropical Shelf Front (STSF) for the Southwest Atlantic Continental Shelf were previously described. However, only scarce data on the biology of the front is available in the literature. The main goal of this paper is to describe the physical, chemical and biological properties of the STSF found in winter 2003 and summer 2004. A cross-section was established at the historically determined location of the STSF. Nine stations were sampled in winter and seven in summer. Each section included a series of conductivity-temperature-depth (CTD) stations where water samples from selected depths were filtered for nutrient determination. Surface samples were taken for chlorophyll a (Chl-a) determination and plankton net tows carried out above and below the pycnocline. Results revealed that winter was marked by an inner-shelf salinity front and that the STSF was located on the mid-shelf The low salinity waters in the inner-shelf indicated a strong influence of freshwater, with high silicate (72 mu M), suspended matter (45 mg l(-1)), phosphate (2.70 mu M) and low nitrate (1.0 mu M) levels. Total dissolved nitrogen was relatively high (22.98 mu M), probably due to the elevated levels of organic compound contribution close to the continental margin. Surface Chl-a concentration decreased from coastal well-mixed waters, where values up to 8.0 mg m(-3) were registered, to offshore waters. Towards the open ocean, high subsurface nutrients values were observed, probably associated to South Atlantic Central Waters (SACW). Zooplankton and ichthyoplankton abundance followed the same trend; three different groups associated to the inner-, mid- and outer-shelf region were identified. During summer, diluted waters extended over the shelf to join the STSF in the upper layer; the concentration of inorganic nutrients decreased in shallow waters; however, high values were observed between 40 and 60 m and in deep offshore waters. Surface Chl-a ranged 0.07-1.5 mg m(-3); winter levels were higher. Three groups of zoo and ichthyoplankton, separated by the STSF, were also identified. Results of the study performed suggest that the influence of freshwater was stronger during winter and that abundance distribution of Chl-a, copepods and ichthyoplankton was related to the Plata Plume Waters (PPW), rather than to the presence of the STSF. During summer, when the presence of freshwater decreases, plankton interactions seem to take place in the STSF. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient distributions observed at some depths along the continental shelf from 27 degrees 05`S (Brazil) to 39 degrees 31`S (Argentina) in winter, 2003 and summer, 2004 related to salinity and dissolved oxygen (mL L-1) and saturation (%) data showed remarkable influences of fresh water discharge over the coastal region and in front of the La Plata estuary. In the southern portion of the study area different processes were verified. Upwelling processes caused by ocean dynamics typical of shelf break areas, eddies related to surface dynamics and regeneration processes confirmed by the increase of nutrients and the decrease of dissolved and saturation oxygen data were verified. High silicate concentrations in the surface waters were identified related to low salinities (minimum of 21.22 in winter and 21.96 in summer), confirming the importance of freshwater inputs in this region, especially in winter. Silicate concentration range showed values between 0.00 and 83.52 mu M during winter and from 0.00 to 41.16 mu M during summer. Phosphate concentrations worked as a secondary trace of terrestrial input and their values varied from 0.00 to 3.30 mu M in winter and from 0.03 to 2.26 mu M in summer; however, in shallow waters, phosphate indicated more clearly the fresh water influence. The most important information given by nitrate concentrations was the presence of water from SACW upwelling that represents a new source of nutrients for marine primary production. Nitrate maximum values reached 41.96 M in winter and 33.10 mu M in summer. At a depth similar to 800m, high nitrate, phosphate and silicate concentrations were related to Malvinas Current Waters, Subantarctic Shallow Waters and Antarctic Atlantic Intermediate Waters (AAIW). Dissolved oxygen varied from 3.41 to 7.06 mL L-1 in winter and from 2.65 to 6.85 mL L-1 in summer. The percentage of dissolved oxygen saturation in the waters showed values between 48% and 113% in winter and from 46% to 135% in summer. The most important primary production was verified in the summer, and situations of undersaturation were mainly observed below 50 m depth and at some points near the coast. The anti-correlation between nutrients and dissolved oxygen which showed evident undersaturation also revealed important potential sites of remineralization processes. The nutrient behaviours showed some aspects of the processes that occur over the Southwestern South Atlantic continental shelf and in their land-sea interfaces between Mar del Plata and Itajai.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane (CH4) emission from agricultural soils increases dramatically as a result of deleterious effect of soil disturbance and nitrogen fertilization on methanotrophic organisms; however, few studies have attempted to evaluate the potential of long-term conservation management systems to mitigate CH4 emissions in tropical and subtropical soils. This study aimed to evaluate the long-term effect (>19 years) of no-till grass- and legume-based cropping systems on annual soil CH4 fluxes in a formerly degraded Acrisol in Southern Brazil. Air sampling was carried out using static chambers and CH4 analysis by gas chromatography. Analysis of historical data set of the experiment evidenced a remarkable effect of high C- and N-input cropping systems on the improvement of biological, chemical, and physical characteristics of this no-tilled soil. Soil CH4 fluxes, which represent a net balance between consumption (-) and production (+) of CH4 in soil, varied from -40 +/- 2 to +62 +/- 78 mu g C m(-2) h(-1). Mean weighted contents of ammonium (NH4+-N) and dissolved organic carbon (DOC) in soil had a positive relationship with accumulated soil CH4 fluxes in the post-management period (r(2) = 0.95, p = 0.05), suggesting an additive effect of these nutrients in suppressing CH4 oxidation and stimulating methanogenesis, respectively, in legume-based cropping systems with high biomass input. Annual CH4 fluxes ranged from -50 +/- 610 to +994 +/- 105 g C ha(-1), which were inversely related to annual biomass-C input (r(2) = 0.99, p = 0.003), with the exception of the cropping system containing pigeon pea, a summer legume that had the highest biologically fixed N input (>300 kg ha(-1) yr(-1)). Our results evidenced a small effect of conservation management systems on decreasing CH4 emissions from soil, despite their significant effect restoring soil quality. We hypothesized that soil CH4 uptake strength has been off-set by an injurious effect of biologically fixed N in legume-based cropping systems on soil methanotrophic microbiota, and by the methanogenesis increase as a result of the O-2 depletion in niches of high biological activity in the surface layer of the no-tillage soil. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the daily relative growth rates (DRGR, in percent per day) of the red macroalga Gracilaria domingensis in synthetic seawater was investigated for the combined influence of five factors, i.e., light (L), temperature (T), nitrate (N), phosphate (P), and molybdate (M), using a statistical design method. The ranges of the experimental cultivation conditions were T, 18-26A degrees C; L, 74-162 mu mol photons m(-2) s(-1); N, 40-80 mu mol L-1; P, 8-16 mu mol L-1; and M, 1-5 nmol L-1. The optimal conditions, which resulted in a maximum growth rate of a parts per thousand yen6.4% d(-1) from 7 to 10 days of cultivation, were determined by analysis of variance (ANOVA) multivariate factorial analysis (with a 2(5) full factorial design) to be L, 74 mu mol photons m(-2) s(-1); T, 26A degrees C; N, 80 mu mol L-1; P, 8 mu mol L-1; and M, 1 nmol L-1. In additional, these growth rate values are close to the growth rate values in natural medium (von Stosch medium), i.e., 6.5-7.0% d(-1). The results analyzed by the ANOVA indicate that the factors N and T are highly significant linear terms, X (L), (alpha = 0.05). On the other hand, the only significant quadratic term (X (Q)) was that for L. Statistically significant interactions between two different factors were found between T vs. L and N vs. T. Finally, a two-way (linear/quadratic interaction) model provided a quite reasonable correlation between the experimental and predicted DRGR values (R (adjusted) (2) = 0.9540).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the influence of seasonality on the behavior of phytoplankton associations in eutrophic reservoirs with different depths in northeastern Brazil. Five collections were carried out at each of the reservoirs at two depths (0.1 m and near the sediment) at three-month intervals in each season (dry and rainy). The phytoplankton samples were preserved in Lugol's solution and quantified under an inverted microscope for the determination of density values, which were subsequently converted to biomass values based on cellular biovolume and classified in phytoplankton associations. The following abiotic variables were analyzed: water temperature, dissolved oxygen, pH, turbidity, water transparency, total phosphorus, total dissolved phosphorus, orthophosphate and total nitrogen. The data were investigated using canonical correspondence analysis. The influence of seasonality on the dynamics of the phytoplankton community was lesser in the deeper reservoirs. Depth affected the behavior of the algal associations. Variation in light availability was a determinant of changes in the phytoplankton structure. Urosolenia and Anabaena associations were more abundant in shallow ecosystems with a larger eutrophic zone, whereas the Microcystis association was more related to deep ecosystems with adequate availability of nutrients. The distribution of Cyclotella, Geitlerinema, Planktothrix, Pseudanabaena and Cylindrospermopsis associations was different from that seen in subtropical regions and the substitution of these associations was related to a reduction in the eutrophic zone rather than the mixture zone. Published by Elsevier GmbH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irrigation of citrus (Citrus aurantium L. x Citrus paradise Macf.) with urban reclaimed wastewater (RWW) can be economical and conserve fresh water. However, concerns remain regarding its deleterious effects on soil quality. We investigated the ionic speciation (ISP) of RWW and potential impacts of 11 yr of irrigation with RWW on soil quality, compared with well-water (WW) irrigation. Most of nutrients (similar to 53-99%) in RWW are free ionic species and readily available for plant uptake, such as: NH4+, NO3-, K+, Ca2+, Mg2+, SO42-, H3BO3, Cl-, Fe2+, Mn2+, Zn2+, Co2+, and Ni2+, whereas more than about 80% of Cu, Cr, Pb, and Al are complexed with CO3-, OH-, and/or organic matter. The RWW irrigation increased the availability and total concentrations of nutrients and nonessential elements, and soil salinity and sodicity by two to three times compared with WW-irrigated soils. Although RWW irrigation changed many soil parameters, no difference in citrus yield was observed. The risk of negative impacts from RWW irrigation on soil quality appears to be minimal because of: (i) adequate quality of RWW, according to USEPA limits; (ii) low concentrations of metals in soil after 11 yr of irrigation with RWW; and (iii) rapid leaching of salts in RWW-irrigated soil during the rainy season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nutritional management of seedlings in the nursery is one of the most important practices that influence seedling quality. The aim of this work was to evaluate the effect of nitrogen, phosphorus and potassium on the development of Schizolobium amazonicum seedlings grown in 250 cm(3) containers with a commercial substrate in the North of Mato Grosso State, Brazil. The experimental design was completely randomized design with five treatments and five replications, each replication being represented by 24 seedlings. The treatments were: control (only commercial substrate); nitrogen fertilization (150 g m(-3) N using ammonium sulfate + 1.0 kg of ammonium sulfate dissolved in 100 L of water and applied in coverage); phosphorus fertilization (300 g P2O5 m(-3) using simple superphosphate); potassium fertilization (100 g m(-3) K2O using potassium chloride + 0.3 kg of potassium chloride dissolved in 100 L of water and applied in coverage) and; complete (a mixture of the three nutrients, 150, 300 and 100 g m(-3) N, P2O5 and K2O, respectively + 1.0 kg of ammonium sulfate + 0.3 kg of potassium chloride). The commercial substrate was composted milled pine bark plus vermiculite. Evaluations of the seedlings were performed at 90 days after sowing. The complete treatment (NPK) gave the highest values for biometric and best plant indices, which express the quality. When analyzing nutrients in isolation; potassium had the lowest effect. Based on these results it can be recommended to fertilize Schizolobium amazonicum seedlings in nurseries with 150, 300 and 100 g m(-3) of N, P2O5 and K2O, respectively, plus 1.0 kg of sulfate ammonium and 0.3 kg of potassium chloride applied in coverage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xylose-to-xylitol bioconversion using 2.5 or 10% (v/v) rice bran extract was performed to verify the influence of this source of nutrients on Candida guilliermondii metabolism. Semisynthetic medium (SM) and sugarcane bagasse hemicellulosic hydrolysate detoxified with ion-exchange resins (HIE) or with alteration in pH combined with adsorption onto activated charcoal (HAC) were fermented in 125 mL Erlenmeyer flasks at 30 ºC and 200 rpm for 72 hours. Activated charcoal supplemented with 2.5% (v/v) rice bran extract was fermented by C. guilliermondii in a MULTIGEN stirred tank reactor using pH 5.0 and 22.9/hour oxygen transfer volumetric coefficient. Higher values of xylitol productivity (0.70, 0.71, and 0.62 g.Lh-1) and xylose-to-xylitol conversion yield (0.71, 0.69, and 0.63 g.g-1) were obtained with 2.5% (v/v) rice bran in semisynthetic medium, ion-exchange resins, and activated charcoal, respectively. Moreover, during batch fermentation, the xylitol volumetric productivity and fermentation efficiency values obtained were 0.53 g.Lh-1 and 61.1%, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the nutrients balance and milk fatty acids profile of dairy cows supplemented with monensin. Twelve Brazilian Holstein dairy cows were distributed into four balanced 3x3 Latin squares, and fed with the following diets: control (C), basal diet without addition of monensin, monensin 24 (M24), addition of 24mg/kg DM of monensin, and monensin 48 (M48), addition of 48mg/kg DM. The experimental diets influenced the efficiency of net energy of lactation utilization. A quadratic effect was observed for the energy balance. It was observed effect of diets on nitrogen balance. It was observed effect of monensin in the milk yield, composition and in the milk fatty acids profile. Monensin in diets of dairy cows in mid lactation, using corn silage, improved the nutrients balance and milk fatty acid profile with 24mg/kg DM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: The main goal of this research was to investigate the influence of the hydrological pulses on the space-temporal dynamics of physical and chemical variables in a wetland adjacent to Jacupiranguinha River (São Paulo, Brazil); METHODS: Eleven sampling points were distributed among the wetland, a tributary by its left side and the adjacent river. Four samplings were carried out, covering the rainy and the dry periods. Measures of pH, dissolved oxygen, electrical conductivity and redox potential were taken in regular intervals of the water column using a multiparametric probe. Water samples were collected for the nitrogen and total phosphorus analysis, as well as their dissolved fractions (dissolved inorganic phosphorus, total dissolved phosphorus, ammoniacal nitrogen and nitrate). Total alkalinity and suspended solids were also quantified; RESULTS: The Multivariate Analysis of Variance showed the influence of the seasonality on the variability of the investigated variables, while the Principal Component Analysis gave rise in two statistical significant axes, which delimited two groups representative of the rainy and dry periods. Hydrological pulses from Jacupiranguinha River, besides contributing to the inputs of nutrients and sediments during the period of connectivity, accounted for the decrease in spatial gradients in the wetland. This "homogenization effect" was evidenced by the Cluster Analysis. The research also showed an industrial raw effluent as the main point source of phosphorus to the Jacupiranguinha River and, indirectly, to the wetland; CONCLUSIONS: Therefore, considering the scarcity of information about the wetlands in the study area, this research, besides contributing to the understanding of the influence of hydrological pulses on the investigated environmental variables, showed the need for adoption of conservation policies of these ecosystems face the increase anthropic pressures that they have been submitted, which may result in lack of their ecological, social and economic functions.