48 resultados para DIABETIC-NEPHROPATHY
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: Albuminuria has been considered a sine qua non condition for the diagnosis of diabetic nephropathy (DN) and has been widely used as a surrogate outcome of chronic kidney disease (CKD). However, recent data suggest that albuminuria may fail as a biomarker in a subset of patients, and the search for novel markers is intense. Methods: We analyzed the role of urinary RBP and of serum and urinary cytokines (TGF-beta, MCP-1 and VEGF) as predictors of the risk of dialysis. doubling of serum creatinine or death (primary outcome. PO) in 56 type 2 diabetic patients with macroalbuminuric DN. Results: Mean follow-up time was 30.7 +/- 10 months. Urinary RBP and MCP-1 were significantly higher in patients presenting the PO, whereas no difference was shown for TGF-beta or VEGF. In the Cox regression, urinary RBP. MCP-1 and VEGF were positively associated and serum VEGF was inversely related to the risk of the PO. However, after adjustments for creatinine clearance, proteinuria, and blood pressure only urinary RBP (OR 11.6; 95% CI 2.7-49.2, p = 0.001 for log RBP) and urinary MCP-1 (OR 11.0; 95% CI 1.6-76.4, p = 0.02 for log MCP-1) remained as significant independent predictors of the PO. Conclusion: Urinary RBP and MCP-1 are independently related to the risk of CKD progression in patients with macroalbuminuric DN. Whether these biomarkers have a role in the setting of normoalbuminuria and microalbuminuria in DN should be further investigated. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Aims: Angiotensin-converting enzyme (ACE) inhibitors are used in diabetic kidney disease to reduce systemic/intra-glomerular pressure. The objective of this study was to investigate whether reducing blood pressure (BP) could modulate renal glucose transporter expression, and urinary markers of diabetic nephropathy in diabetic hypertensive rats treated with ramipril or amlodipine. Main methods: Diabetes was induced in spontaneously-hypertensive rats (~210 g) by streptozotocin (50 mg/kg). Thirty days later, animals received ramipril 15 μg/kg/day (R, n =10), or amlodipine 10 mg/kg/day (A, n= 8,) or water (C, n = 10) by gavage. After 30-day treatment, body weight, glycaemia, urinary albumin and TGF-β1 (enzyme-linked immunosorbent assay) and BP (tail-cuff pressure method) were evaluated. Kidneys were removed for evaluation of renal cortex glucose transporters (Western blotting) and renal tissue ACE activity (fluorometric assay). Key findings: After treatments, body weight (p = 0.77) and glycaemia (p = 0.22) were similar among the groups. Systolic BP was similarly reduced (p < 0.001) in A and R vs. C (172.4 ± 3.2; 186.7 ± 3.7 and 202.2 ± 4.3 mm Hg; respectively). ACE activity (C: 0.903 ± 0.086; A: 0.654 ± 0.025, and R: 0.389 ± 0.057 mU/mg), albuminuria (C: 264.8 ± 15.4; A: 140.8 ± 13.5 and R: 102.8 ± 6.7 mg/24 h), and renal cortex GLUT1 content (C: 46.81 ± 4.54; A: 40.30 ± 5.39 and R: 26.89 ± 0.79 AU) decreased only in R (p < 0.001, p < 0.05 and p < 0.001; respectively). Significance:We concluded that the blockade of the renin–angiotensin systemwith ramipril reduced earlymarkers of diabetic nephropathy, a phenomenon that cannot be specifically related to decreased BP levels.
Resumo:
Tamoxifen, a selective estrogen receptor modulator, has antifibrotic properties; however, whether it can attenuate renal fibrosis is unknown. In this study, we tested the effects of tamoxifen in a model of hypertensive nephrosclerosis (chronic inhibition of nitric oxide synthesis with L-NAME). After 30 days, treated rats had significantly lower levels of albuminuria as well as lower histologic scores for glomerulosclerosis and interstitial fibrosis than untreated controls. Tamoxifen was renoprotective despite having no effect on the sustained, severe hypertension induced by L-NAME. Tamoxifen prevented the accumulation of extracellular matrix by decreasing the expression of collagen I, collagen III, and fibronectin mRNA and protein. These renoprotective effects associated with inhibition of TGF-beta 1 and plasminogen activator inhibitor-1, and with a significant reduction in a-smooth muscle actin-positive cells in the renal interstitium. Furthermore, tamoxifen abrogated IL-1 beta- and angiotensin-II-induced proliferation of fibroblasts from both kidney explants and from the NRK-49F cell line. Tamoxifen also inhibited the expression of extracellular matrix components and the production and release of TGF-beta 1 into the supernatant of these cells. In summary, tamoxifen exhibits antifibrotic effects in the L-NAME model of hypertensive nephrosclerosis, likely through the inhibition of TGF-beta 1, suggesting that it may have therapeutic use in CKD treatment.
Resumo:
Food intake and nutritional status modify the physiological responses of the immune system to illness and infection and regulate the development of chronic inflammatory processes, such as kidney disease. Adipose tissue secretes immune-related proteins called adipokines that have pleiotropic effects on both the immune and neuroendocrine systems, linking metabolism and immune physiology. Leptin, an adipose tissue-derived adipokine, displays a variety of immune and physiological functions, and participates in several immune responses. Here, we review the current literature on the role of leptin in kidney diseases, linking adipose tissue and the immune system with kidney-related disorders. The modulation of this adipose hormone may have a major impact on the treatment of several immune- and metabolic-related kidney diseases.
Resumo:
Background Oxidative stress is recognized as a major pathogenic factor of cellular damage caused by hyperglycemia. NOX/NADPH oxidases generate reactive oxygen species and NOX1, NOX2 and NOX4 isoforms are expressed in kidney and require association with subunit p22phox (encoded by the CYBA gene). Increased expression of p22phox was described in animal models of diabetic nephropathy. In the opposite direction, glutathione is one of the main endogenous antioxidants whose plasmatic concentrations were reported to be reduced in diabetes patients. The aim of the present investigation was to test whether functional single nucleotide polymorphisms (SNPs) in genes involved in the generation of NADPH-dependent O2•- (-675 T → A in CYBA, unregistered) and in glutathione metabolism (-129 C → T in GCLC [rs17883901] and -65 T → C in GPX3 [rs8177412]) confer susceptibility to renal disease in type 1 diabetes patients. Methods 401 patients were sorted into two groups according to the presence (n = 104) or absence (n = 196) of overt diabetic nephropathy or according to glomerular filtration rate (GFR) estimated by Modification of Diet in Renal Disease (MDRD) equation: ≥ 60 mL (n = 265) or < 60 mL/min/1.73 m2 (n = 136) and were genotyped. Results No differences were found in the frequency of genotypes between diabetic and non-diabetic subjects. The frequency of GFR < 60 mL/min was significantly lower in the group of patients carrying CYBA genotypes T/A+A/A (18.7%) than in the group carrying the T/T genotype (35.3%) (P = 0.0143) and the frequency of GFR < 60 mL/min was significantly higher in the group of patients carrying GCLC genotypes C/T+T/T (47.1%) than in the group carrying the C/C genotype (31.1%) (p = 0.0082). Logistic regression analysis identified the presence of at least one A allele of the CYBA SNP as an independent protection factor against decreased GFR (OR = 0.38, CI95% 0.14-0.88, p = 0.0354) and the presence of at least one T allele of the GCLC rs17883901 SNP as an independent risk factor for decreased GFR (OR = 2.40, CI95% 1.27-4.56, p = 0.0068). Conclusions The functional SNPs CYBA -675 T → A and GCLC rs17883901, probably associated with cellular redox imbalances, modulate the risk for renal disease in the studied population of type 1 diabetes patients and require validation in additional cohorts.
Resumo:
Considering the similarity between structural, hemodynamic, and functional changes of obesity-related renal disease and diabetic nephropathy, we hypothesized that renal glucose transporter changes occur in obesity as in diabetes. The aim of the work was to evaluate GLUT1 and GLUT2 in kidneys of an animal model of metabolic syndrome. Neonate spontaneously hypertensive rats (SHR), n=15/group, were treated with monosodium glutamate (5 mg/g) (MetS) for 9 days and compared with saline-treated Wistar-Kyoto (C) and SHR (H) rats. Lee index, systolic arterial pressure (SAP), glycemia, insulin resistance, triglycerides, and HDL cholesterol were evaluated at 3 and 6 months. Medullar GLUT1 and cortical GLUT2 were analyzed by Western blot. MetS vs. C and H rats had the highest Lee index (p<0.001) and insulin resistance (3-months C: 4.3±0.7, H: 3.9±0.9, MetS: 2.7±0.6; 6-months C: 4.2±0.6, H: 3.8±0.5, MetS: 2.4±0.6% • min−1, p<0.001), similar glycemia, and the lowest HDL-cholesterol at 6-months (p<0.001). In the MetS and H rats, SAP was higher vs. C at 3-months (p<0.001) and 6-months (C: 151±15, H: 190±11, MetS: 185±13 mm Hg, p<0.001) of age. GLUT1 was ̴ 13× lower (p<0.001) at 3-months, reestablishing its content at 6-months in MetS group, while GLUT2 was 2× higher (p<0.001) in this group at 6-months of age. Renal GLUT1 and GLUT2 are modulated in kidney of rats with metabolic syndrome, where obesity, insulin resistance and hypertension coexist, despite normoglycemia. Like in diabetes, cortical GLUT2 overexpression may contribute to the development of kidney disease
Resumo:
AIMS: Solute carrier 2a2 (Slc2a2) gene codifies the glucose transporter GLUT2, a key protein for glucose flux in hepatocytes and renal epithelial cells of proximal tubule. In diabetes mellitus, hepatic and tubular glucose output has been related to Slc2a2/GLUT2 overexpression; and controlling the expression of this gene may be an important adjuvant way to improve glycemic homeostasis. Thus, the present study investigated transcriptional mechanisms involved in the diabetes-induced overexpression of the Slc2a2 gene. MAIN METHODS: Hepatocyte nuclear factors 1α and 4α (HNF-1α and HNF-4α), forkhead box A2 (FOXA2), sterol regulatory element binding protein-1c (SREBP-1c) and the CCAAT-enhancer-binding protein (C/EBPβ) mRNA expression (RT-PCR) and binding activity into the Slc2a2 promoter (electrophoretic mobility assay) were analyzed in the liver and kidney of diabetic and 6-day insulin-treated diabetic rats. KEY FINDINGS: Slc2a2/GLUT2 expression increased by more than 50% (P<0.001) in the liver and kidney of diabetic rats, and 6-day insulin treatment restores these values to those observed in non-diabetic animals. Similarly, the mRNA expression and the binding activity of HNF-1α, HNF-4α and FOXA2 increased by 50 to 100% (P<0.05 to P<0.001), also returning to values of non-diabetic rats after insulin treatment. Neither the Srebf1 and Cebpb mRNA expression, nor the SREBP-1c and C/EBP-β binding activity was altered in diabetic rats. SIGNIFICANCE: HNF-1α, HNF-4α and FOXA2 transcriptional factors are involved in diabetes-induced overexpression of Slc2a2 gene in the liver and kidney. These data point out that these transcriptional factors are important targets to control GLUT2 expression in these tissues, which can contribute to glycemic homeostasis in diabetes.
Resumo:
Background-It remains uncertain whether acetylcysteine prevents contrast-induced acute kidney injury. Methods and Results-We randomly assigned 2308 patients undergoing an intravascular angiographic procedure with at least 1 risk factor for contrast-induced acute kidney injury (age >70 years, renal failure, diabetes mellitus, heart failure, or hypotension) to acetylcysteine 1200 mg or placebo. The study drugs were administered orally twice daily for 2 doses before and 2 doses after the procedure. The allocation was concealed (central Web-based randomization). All analysis followed the intention-to-treat principle. The incidence of contrast-induced acute kidney injury (primary end point) was 12.7% in the acetylcysteine group and 12.7% in the control group (relative risk, 1.00; 95% confidence interval, 0.81 to 1.25; P = 0.97). A combined end point of mortality or need for dialysis at 30 days was also similar in both groups (2.2% and 2.3%, respectively; hazard ratio, 0.97; 95% confidence interval, 0.56 to 1.69; P = 0.92). Consistent effects were observed in all subgroups analyzed, including those with renal impairment. Conclusions-In this large randomized trial, we found that acetylcysteine does not reduce the risk of contrast-induced acute kidney injury or other clinically relevant outcomes in at-risk patients undergoing coronary and peripheral vascular angiography.
Resumo:
Objective: To determine plasma homocysteine levels during fasting and after methionine overload, and to correlate homocysteinemia according to methylenetetrahydrofolate reductase (MTHFR) polymorphism in type 2 diabetic adults. Subjects and methods: The study included 50 type 2 diabetic adults (DM group) and 52 healthy subjects (Control group). Anthropometric data, and information on food intake, serum levels of vitamin B 12, folic acid and plasma homocysteine were obtained. The identification of C677T and A1298C polymorphisms was carried out in the MTHFR gene. Results: There was no significant difference in homocysteinemia between the two groups, and hyperhomocysteinemia during fasting occurred in 40% of the diabetic patients and in 23% of the controls. For the same polymorphism, there was not any significant difference in homocysteine between the groups. In the Control group, homocysteinemia was greater in those subjects with C677T and A1298C polymorphisms. Among diabetic subjects, those with the A1298C polymorphism had lower levels of homocysteine compared with individuals with C677T polymorphism. Conclusion: The MTHFR polymorphism (C677T and A1298C) resulted in different outcomes regarding homocysteinemia among individuals of each group (diabetic and control). These data suggest that metabolic factors inherent to diabetes influence homocysteine metabolism. Arq Bras Endocrinol Metab. 2012;56(7):429-34
Resumo:
Objective: To determine the prevalence of patients with type 1 diabetes mellitus who meet the glycemic and cardiovascular (CV) risk factors goals and the frequency of screening for diabetic complications in Brazil according to the American Diabetes Association guidelines. Research design and methods: This was a cross-sectional, multicenter study conducted between December 2008 and December 2010 in 28 public clinics in 20 Brazilian cities. Data were obtained from 1774 adult patients (56.8% females, 57.2% Caucasians) aged 30.3 +/- 9.8 years with diabetes duration of 14.3 +/- 8.8 years. Results: Systolic blood pressure was at goal in 40.3% and diastolic blood pressure was at goal in 26.6% of hypertensive patients. LDL cholesterol and HbA1c were at the goal in 45.2% and 13.2% of the patients, respectively. Overweight was presented in 25.6% and obesity in 6.9%. Among those with more than 5 years of disease, screening for retinopathy was performed in the preceding year in 70.1%. Nephropathy and feet complications were screened in 63.1% and 65.1%, respectively. Conclusions: The majority of patients did not meet metabolic control goals and a substantial proportion was not screened for diabetic complications. These issues may increase the risk of chronic complications and negatively impact public health. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[C-14]-pyruvate into glycerol-TAG. The denervation provokes a reduction (similar to 70%) in the NE content of WAT in fasted, diabetic and HP diet-fed rats. The denervation induced an increase in WAT glucose uptake of fed, fasted, diabetic and HP diet-fed rats (40%, 60%, 3.2 fold and 35%, respectively). TAG-glycerol synthesis from pyruvate was reduced by denervation in adipocytes of fed (58%) and fasted (36%), saline-treated (58%) and diabetic (23%), and HP diet-fed rats (11%). In these same groups the denervation reduced the PEPCK mRNA expression (75%-95%) and the PEPCK activity (35%-60%). The denervation caused a similar to 35% decrease in GyK activity of control rats and a further similar to 35% reduction in the already low enzyme activity of fasted, diabetic and HP diet-fed rats. These data suggest that the SNS plays an important role in modulating G3P generating pathways in WAT, in situations where insulin levels are low. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this study we evaluated the onset and resolution of inflammation in control and streptozotocin-induced diabetic rats subjected to a single session of intense exercise. The following measurements were carried out prior to, immediately after, and 2 and 24 hours after exercise: plasma levels of proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-6, CINC-2 alpha/beta, MIP-3 alpha, and IL-6), immunoglobulins (IgA and IgM), acute phase proteins (CRP and C3), and creatine kinase (CK) activity. We also examined the occurrence of macrophage death by measurements of macrophages necrosis (loss of membrane integrity) and DNA fragmentation. An increase was observed in the concentration of IL-1 beta (3.3-fold) and TNF-alpha (2.0-fold) and in the proportion of necrotic macrophages (4.5-fold) in diabetic rats 24 hours after exercise, while the control group showed basal measurements. Twenty-four hours after the exercise, serum CK activity was elevated in diabetic rats but not in control animals. We concluded that lesion and inflammations resulting from intense exercise were greater and lasted longer in diabetic animals than in nondiabetic control rats.
Resumo:
To evaluate changes in electroretinographic (ERG) findings after panretinal photocoagulation (PRP) compared to PRP plus intravitreal injection of ranibizumab (IVR) in eyes with high-risk proliferative diabetic retinopathy (PDR). Patients with high-risk PDR and no prior laser treatment were assigned randomly to receive PRP (PRP group; n = 9) or PRP plus IVR (PRPplus group; n = 11). PRP was administered in two sessions (weeks 0 and 2), and IVR was administered at the end of the first laser session (week 0) in the PRPplus group. Standardized ophthalmic evaluations including (ETDRS) best-corrected visual acuity (BCVA), and fluorescein angiography to measure area of fluorescein leakage (FLA), were performed at baseline and at weeks 16 (+/- 2), 32 (+/- 2) and 48 (+/- 2). ERG was measured according to ISCEV standards at baseline and at week 48 (+/- 2). At 48 weeks, 2,400-3,000 laser spots had been placed in eyes in the PRP group, while only 1,400-1,800 spots had been placed in the PRPplus group. Compared to baseline, there was a statistically significant (P < 0.05) FLA reduction observed at all study visits in both groups, with the reduction observed in the PRPplus group significantly larger than that in the PRP group at week 48. ROD b-wave amplitude was significantly reduced to 46 +/- A 5 % (P < 0.05) of baseline in the PRP group and 64 +/- A 6 % (P < 0.05) in the PRPplus group. This reduction was significantly larger in the PRP group than in the PRPplus group (P = 0.024; t Test). Similar results were observed for the dark-adapted Combined Response (CR) b-wave amplitude, with a reduction at 48 weeks compared to baseline of 45 +/- A 4 % in the PRP group and 62 +/- A 5 % in the PRPplus group; the reduction in CR b-wave amplitude was significantly larger in the PRP group than in the PRPplus group (P = 0.0094). CR a-wave, oscillatory potentials, cone single flash, and 30 Hz flicker responses showed statistically significant within-group reductions, but no differences in between-group analyses. These results suggest that treating high-risk PDR with PRP plus IVR is effective for PDR control, and permits the use of less extensive PRP which, in turn, induces less retinal functional loss, in particular for rod-driven post-receptoral responses, than treatment with PRP alone.
Resumo:
Diabetes mellitus is a product of low insulin sensibility and pancreatic beta-cell insufficiency. Rats with streptozotocin-induced diabetes during the neonatal period by the fifth day of age develop the classic diabetic picture of hyperglycemia, hypoinsulinemia, polyuria, and polydipsia aggravated by insulin resistance in adulthood. In this study, we investigated whether the effect of long-term treatment with melatonin can improve insulin resistance and other metabolic disorders in these animals. At the fourth week of age, diabetic animals started an 8-wk treatment with melatonin (1 mg/kg body weight) in the drinking water at night. Animals were then killing, and the sc, epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed, and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Blood samples were collected for biochemical assays. Melatonin treatment reduced hyperglycemia, polydipsia, and polyphagia as well as improved insulin resistance as demonstrated by constant glucose disappearance rate and homeostasis model of assessment-insulin resistance. However, melatonin treatment was unable to recover body weight deficiency, fat mass, and adipocyte size of diabetic animals. Adiponectin and fructosamine levels were completely recovered by melatonin, whereas neither plasma insulin level nor insulin secretion capacity was improved in diabetic animals. Furthermore, melatonin caused a marked delay in the sexual development, leaving genital structures smaller than those of nontreated diabetic animals. Melatonin treatment improved the responsiveness of adipocytes to insulin in diabetic animals measured by tests of glucose uptake (sc, EP, and RP), glucose oxidation, and incorporation of glucose into lipids (EP and RP), an effect that seems partially related to an increased expression of insulin receptor substrate 1, acetyl-coenzyme A carboxylase and fatty acid synthase. In conclusion, melatonin treatment was capable of ameliorating the metabolic abnormalities in this particular diabetes model, including insulin resistance and promoting a better long-term glycemic control. (Endocrinology 153: 2178-2188, 2012)
Resumo:
Introduction: We evaluated the role of cardiovascular autonomic changes in hemodynamics at rest and in response to exercise in streptozotocin-induced diabetic rats. Methods: Male Wistar rats were divided into nondiabetic (ND, n = 8) and diabetic (D, n = 8) groups. Arterial pressure signals were recorded in the basal state and after atropine or propranolol injections at rest, during exercise and during recovery. Results: At rest, vagal tonus was reduced in D (37 +/- 3 bpm) in comparison with the ND group (61 +/- 9 bpm). Heart rate during exercise was lower in D in relation to ND rats associated with reduced vagal withdrawal in the D group. The D rats had an increase in vagal tonus in the recovery period (49 +/- 6 bpm). Conclusions: Exercise-induced hemodynamic adjustment impairment in diabetic rats was associated with reduced cardiac vagal control. The vagal dysfunction was attenuated after aerobic exercise, reinforcing the positive role of this approach in the management of cardiovascular risk in diabetics. Muscle Nerve 46: 96101, 2012