36 resultados para DIABETIC DIARRHEA
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective: To determine plasma homocysteine levels during fasting and after methionine overload, and to correlate homocysteinemia according to methylenetetrahydrofolate reductase (MTHFR) polymorphism in type 2 diabetic adults. Subjects and methods: The study included 50 type 2 diabetic adults (DM group) and 52 healthy subjects (Control group). Anthropometric data, and information on food intake, serum levels of vitamin B 12, folic acid and plasma homocysteine were obtained. The identification of C677T and A1298C polymorphisms was carried out in the MTHFR gene. Results: There was no significant difference in homocysteinemia between the two groups, and hyperhomocysteinemia during fasting occurred in 40% of the diabetic patients and in 23% of the controls. For the same polymorphism, there was not any significant difference in homocysteine between the groups. In the Control group, homocysteinemia was greater in those subjects with C677T and A1298C polymorphisms. Among diabetic subjects, those with the A1298C polymorphism had lower levels of homocysteine compared with individuals with C677T polymorphism. Conclusion: The MTHFR polymorphism (C677T and A1298C) resulted in different outcomes regarding homocysteinemia among individuals of each group (diabetic and control). These data suggest that metabolic factors inherent to diabetes influence homocysteine metabolism. Arq Bras Endocrinol Metab. 2012;56(7):429-34
Resumo:
The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[C-14]-pyruvate into glycerol-TAG. The denervation provokes a reduction (similar to 70%) in the NE content of WAT in fasted, diabetic and HP diet-fed rats. The denervation induced an increase in WAT glucose uptake of fed, fasted, diabetic and HP diet-fed rats (40%, 60%, 3.2 fold and 35%, respectively). TAG-glycerol synthesis from pyruvate was reduced by denervation in adipocytes of fed (58%) and fasted (36%), saline-treated (58%) and diabetic (23%), and HP diet-fed rats (11%). In these same groups the denervation reduced the PEPCK mRNA expression (75%-95%) and the PEPCK activity (35%-60%). The denervation caused a similar to 35% decrease in GyK activity of control rats and a further similar to 35% reduction in the already low enzyme activity of fasted, diabetic and HP diet-fed rats. These data suggest that the SNS plays an important role in modulating G3P generating pathways in WAT, in situations where insulin levels are low. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: Albuminuria has been considered a sine qua non condition for the diagnosis of diabetic nephropathy (DN) and has been widely used as a surrogate outcome of chronic kidney disease (CKD). However, recent data suggest that albuminuria may fail as a biomarker in a subset of patients, and the search for novel markers is intense. Methods: We analyzed the role of urinary RBP and of serum and urinary cytokines (TGF-beta, MCP-1 and VEGF) as predictors of the risk of dialysis. doubling of serum creatinine or death (primary outcome. PO) in 56 type 2 diabetic patients with macroalbuminuric DN. Results: Mean follow-up time was 30.7 +/- 10 months. Urinary RBP and MCP-1 were significantly higher in patients presenting the PO, whereas no difference was shown for TGF-beta or VEGF. In the Cox regression, urinary RBP. MCP-1 and VEGF were positively associated and serum VEGF was inversely related to the risk of the PO. However, after adjustments for creatinine clearance, proteinuria, and blood pressure only urinary RBP (OR 11.6; 95% CI 2.7-49.2, p = 0.001 for log RBP) and urinary MCP-1 (OR 11.0; 95% CI 1.6-76.4, p = 0.02 for log MCP-1) remained as significant independent predictors of the PO. Conclusion: Urinary RBP and MCP-1 are independently related to the risk of CKD progression in patients with macroalbuminuric DN. Whether these biomarkers have a role in the setting of normoalbuminuria and microalbuminuria in DN should be further investigated. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this study we evaluated the onset and resolution of inflammation in control and streptozotocin-induced diabetic rats subjected to a single session of intense exercise. The following measurements were carried out prior to, immediately after, and 2 and 24 hours after exercise: plasma levels of proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-6, CINC-2 alpha/beta, MIP-3 alpha, and IL-6), immunoglobulins (IgA and IgM), acute phase proteins (CRP and C3), and creatine kinase (CK) activity. We also examined the occurrence of macrophage death by measurements of macrophages necrosis (loss of membrane integrity) and DNA fragmentation. An increase was observed in the concentration of IL-1 beta (3.3-fold) and TNF-alpha (2.0-fold) and in the proportion of necrotic macrophages (4.5-fold) in diabetic rats 24 hours after exercise, while the control group showed basal measurements. Twenty-four hours after the exercise, serum CK activity was elevated in diabetic rats but not in control animals. We concluded that lesion and inflammations resulting from intense exercise were greater and lasted longer in diabetic animals than in nondiabetic control rats.
Resumo:
To evaluate changes in electroretinographic (ERG) findings after panretinal photocoagulation (PRP) compared to PRP plus intravitreal injection of ranibizumab (IVR) in eyes with high-risk proliferative diabetic retinopathy (PDR). Patients with high-risk PDR and no prior laser treatment were assigned randomly to receive PRP (PRP group; n = 9) or PRP plus IVR (PRPplus group; n = 11). PRP was administered in two sessions (weeks 0 and 2), and IVR was administered at the end of the first laser session (week 0) in the PRPplus group. Standardized ophthalmic evaluations including (ETDRS) best-corrected visual acuity (BCVA), and fluorescein angiography to measure area of fluorescein leakage (FLA), were performed at baseline and at weeks 16 (+/- 2), 32 (+/- 2) and 48 (+/- 2). ERG was measured according to ISCEV standards at baseline and at week 48 (+/- 2). At 48 weeks, 2,400-3,000 laser spots had been placed in eyes in the PRP group, while only 1,400-1,800 spots had been placed in the PRPplus group. Compared to baseline, there was a statistically significant (P < 0.05) FLA reduction observed at all study visits in both groups, with the reduction observed in the PRPplus group significantly larger than that in the PRP group at week 48. ROD b-wave amplitude was significantly reduced to 46 +/- A 5 % (P < 0.05) of baseline in the PRP group and 64 +/- A 6 % (P < 0.05) in the PRPplus group. This reduction was significantly larger in the PRP group than in the PRPplus group (P = 0.024; t Test). Similar results were observed for the dark-adapted Combined Response (CR) b-wave amplitude, with a reduction at 48 weeks compared to baseline of 45 +/- A 4 % in the PRP group and 62 +/- A 5 % in the PRPplus group; the reduction in CR b-wave amplitude was significantly larger in the PRP group than in the PRPplus group (P = 0.0094). CR a-wave, oscillatory potentials, cone single flash, and 30 Hz flicker responses showed statistically significant within-group reductions, but no differences in between-group analyses. These results suggest that treating high-risk PDR with PRP plus IVR is effective for PDR control, and permits the use of less extensive PRP which, in turn, induces less retinal functional loss, in particular for rod-driven post-receptoral responses, than treatment with PRP alone.
Resumo:
Diabetes mellitus is a product of low insulin sensibility and pancreatic beta-cell insufficiency. Rats with streptozotocin-induced diabetes during the neonatal period by the fifth day of age develop the classic diabetic picture of hyperglycemia, hypoinsulinemia, polyuria, and polydipsia aggravated by insulin resistance in adulthood. In this study, we investigated whether the effect of long-term treatment with melatonin can improve insulin resistance and other metabolic disorders in these animals. At the fourth week of age, diabetic animals started an 8-wk treatment with melatonin (1 mg/kg body weight) in the drinking water at night. Animals were then killing, and the sc, epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed, and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Blood samples were collected for biochemical assays. Melatonin treatment reduced hyperglycemia, polydipsia, and polyphagia as well as improved insulin resistance as demonstrated by constant glucose disappearance rate and homeostasis model of assessment-insulin resistance. However, melatonin treatment was unable to recover body weight deficiency, fat mass, and adipocyte size of diabetic animals. Adiponectin and fructosamine levels were completely recovered by melatonin, whereas neither plasma insulin level nor insulin secretion capacity was improved in diabetic animals. Furthermore, melatonin caused a marked delay in the sexual development, leaving genital structures smaller than those of nontreated diabetic animals. Melatonin treatment improved the responsiveness of adipocytes to insulin in diabetic animals measured by tests of glucose uptake (sc, EP, and RP), glucose oxidation, and incorporation of glucose into lipids (EP and RP), an effect that seems partially related to an increased expression of insulin receptor substrate 1, acetyl-coenzyme A carboxylase and fatty acid synthase. In conclusion, melatonin treatment was capable of ameliorating the metabolic abnormalities in this particular diabetes model, including insulin resistance and promoting a better long-term glycemic control. (Endocrinology 153: 2178-2188, 2012)
Resumo:
Introduction: We evaluated the role of cardiovascular autonomic changes in hemodynamics at rest and in response to exercise in streptozotocin-induced diabetic rats. Methods: Male Wistar rats were divided into nondiabetic (ND, n = 8) and diabetic (D, n = 8) groups. Arterial pressure signals were recorded in the basal state and after atropine or propranolol injections at rest, during exercise and during recovery. Results: At rest, vagal tonus was reduced in D (37 +/- 3 bpm) in comparison with the ND group (61 +/- 9 bpm). Heart rate during exercise was lower in D in relation to ND rats associated with reduced vagal withdrawal in the D group. The D rats had an increase in vagal tonus in the recovery period (49 +/- 6 bpm). Conclusions: Exercise-induced hemodynamic adjustment impairment in diabetic rats was associated with reduced cardiac vagal control. The vagal dysfunction was attenuated after aerobic exercise, reinforcing the positive role of this approach in the management of cardiovascular risk in diabetics. Muscle Nerve 46: 96101, 2012
Resumo:
Acute lung injury (ALI) develops in response to a direct insult to the lung or secondarily to a systemic inflammatory response, such as sepsis. There is clinical evidence that the incidence and severity of ALI induced by direct insult are lower in diabetics. In the present study we investigated whether the same occurs in ALI secondarily to sepsis and the molecular mechanisms involved. Diabetes was induced in male Wistar rats by alloxan and sepsis by caecal ligation and puncture surgery (CLP). Six hours later, the lungs were examined for oedema and cell infiltration in bronchoalveolar lavage. Alveolar macrophages (AMs) were cultured in vitro for analysis of I kappa B and p65 subunit of NF kappa B phosphorylation and MyD88 and SOCS-1 mRNA. Diabetic rats were more susceptible to sepsis than non-diabetics. In non-diabetic rats, the lung presented oedema, leukocyte infiltration and increased COX2 expression. In diabetic rats these inflammatory events were significantly less intense. To understand why diabetic rats despite being more susceptible to sepsis develop milder ALI, we examined the NF kappa B activation in AMs of animals with sepsis. Whereas in non-diabetic rats the phosphorylation of I kappa B and p65 subunit occurred after 6 h of sepsis induction, this did not occur in diabetics. Moreover, in AMs from diabetic rats the expression of MyD88 mRNA was lower and that of SOCS-1 mRNA was increased compared with AMs from non-diabetic rats. These results show that ALI secondary to sepsis is milder in diabetic rats and this correlates with impaired activation of NF kappa B, increased SOCS-1 and decreased MyD88 mRNA.
Resumo:
In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.
Resumo:
The objective of the present study was to investigate the effects of an acute aerobic exercise on arterial pressure (AP), heart rate (HR), and baroreflex sensitivity (BRS) in STZ-induced diabetic rats. Male Wistar rats were divided into control (n = 8) and diabetic (n = 8) groups. AP, HR, and BRS, which were measured by tachycardic and bradycardic (BR) responses to AP changes, were evaluated at rest (R) and postexercise session (PE) on a treadmill. At rest, STZ diabetes induced AP and HR reductions, associated with BR impairment. Attenuation in resting diabetes-induced AP (R: 103 +/- 2 versus PE: 111 +/- 3 mmHg) and HR (R: 290 +/- 7 versus PE:328 +/- 10 bpm) reductions and BR dysfunction (R: -0.70 +/- 0.06 versus PE:-1.21 +/- 0.09 bpm/mmHg) was observed in the postexercise period. In conclusion, the hemodynamic and arterial baro-mediated control of circulation improvement in the postexercise period reinforces the role of exercise in the management of cardiovascular risk in diabetes.
Resumo:
Carnosine is present in high concentrations in skeletal muscle where it contributes to acid buffering and functions also as a natural protector against oxidative and carbonyl stress. Animal studies have shown an anti-diabetic effect of carnosine supplementation. High carnosinase activity, the carnosine degrading enzyme in serum, is a risk factor for diabetic complications in humans. The aim of the present study was to compare the muscle carnosine concentration in diabetic subjects to the level in non-diabetics. Type 1 and 2 diabetic patients and matched healthy controls (total n = 58) were included in the study. Muscle carnosine content was evaluated by proton magnetic resonance spectroscopy (3 Tesla) in soleus and gastrocnemius. Significantly lower carnosine content (-45%) in gastrocnemius muscle, but not in soleus, was shown in type 2 diabetic patients compared with controls. No differences were observed in type 1 diabetic patients. Type II diabetic patients display a reduced muscular carnosine content. A reduction in muscle carnosine concentration may be partially associated with defective mechanisms against oxidative, glycative and carbonyl stress in muscle.
Resumo:
Aims: Metformin is an insulin sensitizing agent with beneficial effects in diabetic patients on glycemic levels and in the cardiovascular system. We examined whether the metabolic changes and the vascular dysfunction in monosodium glutamate-induced obese non-diabetic (MSG) rats might be improved by metformin. Main methods: 16 week-old MSG rats were treated with metformin for 15 days and compared with age-matched untreated MSG and non-obese non-diabetic rats (control). Blood pressure, insulin sensitivity, vascular reactivity and prostanoid release in the perfused mesenteric arteriolar bed as well as nitric oxide production and reactive oxygen species generation in isolated mesenteric arteries were analyzed. Key findings: 18-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia, insulin resistance and hyperinsulinemia. Metformin treatment improved these alterations. The norepinephrine-induced response, increased in the mesenteric arteriolar bed from MSG rats, was corrected by metformin. Indomethacin corrected the enhanced contractile response in MSG rats but did not affect metformin effects. The sensitivity to acetylcholine, reduced in MSG rats, was also corrected by metformin. Indomethacin corrected the reduced sensitivity to acetylcholine in MSG rats but did not affect metformin effects. The sensitivity to sodium nitroprusside was increased in preparations from metformin-treated rats. Metformin treatment restored both the reduced PGI2/TXA2 ratio and the increased reactive oxygen species generation in preparations from MSG rats. Significance: Metformin improved the vascular function in MSG rats through reduction in reactive oxygen species generation, modulation of membrane hyperpolarization. correction of the unbalanced prostanoids release and increase in the sensitivity of the smooth muscle to nitric oxide. (c) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background: Polyneuropathy is a complication of diabetes mellitus that has been very challenging for clinicians. It results in high public health costs and has a huge impact on patients' quality of life. Preventive interventions are still the most important approach to avoid plantar ulceration and amputation, which is the most devastating endpoint of the disease. Some therapeutic interventions improve gait quality, confidence, and quality of life; however, there is no evidence yet of an effective physical therapy treatment for recovering musculoskeletal function and foot rollover during gait that could potentially redistribute plantar pressure and reduce the risk of ulcer formation. Methods/Design: A randomised, controlled trial, with blind assessment, was designed to study the effect of a physiotherapy intervention on foot rollover during gait, range of motion, muscle strength and function of the foot and ankle, and balance confidence. The main outcome is plantar pressure during foot rollover, and the secondary outcomes are kinetic and kinematic parameters of gait, neuropathy signs and symptoms, foot and ankle range of motion and function, muscle strength, and balance confidence. The intervention is carried out for 12 weeks, twice a week, for 40-60 min each session. The follow-up period is 24 weeks from the baseline condition. Discussion: Herein, we present a more comprehensive and specific physiotherapy approach for foot and ankle function, by choosing simple tasks, focusing on recovering range of motion, strength, and functionality of the joints most impaired by diabetic polyneuropathy. In addition, this intervention aims to transfer these peripheral gains to the functional and more complex task of foot rollover during gait, in order to reduce risk of ulceration. If it shows any benefit, this protocol can be used in clinical practice and can be indicated as complementary treatment for this disease.
Resumo:
Objective The aim of this study was to compare the efficacy of treating osmotic diarrhea and dehydration in calves with hypertonic saline solution (HSS) IV, isotonic electrolyte solution (IES) PO, and a combination of these 2 solutions (HSS + IES). Experimental Design Eighteen male calves 830 days of age were used to evaluate the efficacy of 3 methods of fluid therapy after induction of osmotic diarrhea and dehydration. The diarrhea and dehydration were induced by administration of saccharose, spironolactone, and hydrochlorothiazide for 48 hours. The animals were randomly divided into 3 experimental groups: Group 1: 7.2% hypertonic saline solution-HSS (5 mL/kg IV); Group 2: oral isotonic electrolyte solution IES (60 mL/kg PO); or Group 3: HSS+IES. Clinical signs and laboratory finding observed 48 hours post-induction (Time 0) included diarrhea, dehydration, lethargy, and metabolic acidosis. Results Calves treated with HSS + IES experienced decreases in hematocrit, total protein concentration, albumin concentration, urea nitrogen concentration, and plasma volume as well as increases in blood pH, blood bicarbonate concentration, and central venous pressure between 1 and 3 hours post-treatment. These findings also were observed in animals treated with IES, however, at a slower rate than in the HSS + IES-treated animals. Animals treated with HSS continued to display signs of dehydration, lethargy, and metabolic acidosis 24 hours post-treatment. Conclusion Treatment with a combination of HSS and IES produced rapid and sustainable correction of hypovolemia and metabolic acidosis in calves with noninfections diarrhea and dehydration.
Resumo:
Background: The progression of diabetes and the challenge of daily tasks may result in changes in biomechanical strategies. Descending stairs is a common task that patients have to deal with, however it still has not been properly studied in this population. Objectives: We describe and compare the net joint moments and kinematics of the lower limbs in diabetic individuals with and without peripheral neuropathy and healthy controls during stair descent. Method: Forty-two adults were assessed: control group (13), diabetic group (14), and neuropathic diabetic group (15). The flexor and extensor net moment peaks and joint angles of the hip, knee, and ankle were described and compared in terms of effect size and ANOVAs (p<0.05). Results: Both diabetic groups presented greater dorsiflexion [large effect size] and a smaller hip extensor moment [large effect size] in the weight acceptance phase. In the propulsion phase, diabetics with and without neuropathy showed a greater hip flexor moment [large effect size] and smaller ankle extension [large effect size]. Conclusion: Diabetic patients, even without neuropathy, revealed poor eccentric control in the weight acceptance phase, and in the propulsion phase, they showed a different hip strategy, where they chose to take the leg off the ground using more flexion torque at the hip instead of using a proper ankle extension function.