16 resultados para DFT calculation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Layered double hydroxide (LDH) nanocontainers, suitable as carriers for anionic drugs, were intercalated with Pravastatin drug using magnesium-aluminum and zinc-aluminum in a M-II/Al molar ratio equal 2 and different Al3+/Pravastatin molar ratios. Postsynthesis treatments were used in order to increase the materials crystallinity. Hybrid materials were characterized by a set of physical chemical techniques: chemical elemental analysis, X-ray diffraction (XRD), mass coupled thermal analyses, vibrational infrared and Raman spectroscopies, and solid-state C-13 nuclear magnetic resonance (NMR). Results were interpreted in light of computational density functional theory (DFT) calculations performed for Sodium Pravastatin in order to assign the data obtained for the LDH intercalated materials. XRD peaks of LDH-Pravastatin material and the one-dimensional (1D) electron density map pointed out to a bilayer arrangement of Pravastatin in the interlayer region, where its associated carboxylate and vicinal hydroxyl groups are close to the positive LDH. The structural organization observed for the stacked assembly containing the unsymmetrical and bulky monoanion Pravastatin and LDH seems to be promoted by a self-assembling process, in which local interactions are maximized and chloride ion cointercalation is required. It is observed a high similarity among vibrational and C-13 NMR spectra of Na-Pravastatin and LDH-Pravastatin materials. Those features indicate that the intercalation preserves the drug structural integrity. Spectroscopic techniques corroborate the nature of the guest species and their arrangement between the inorganic layers. Changes related to carboxylate, alcohol, and olefinic moieties are observed in both vibrational Raman and C-13 NMR spectra after the drug intercalation. Thus, Pravastatin ions are forced to be arranged as head to tail through intermolecular hydrogen bonding between adjacent organic species. The thermal decomposition profile of the hybrid samples is distinct of that one observed for Na-Pravastatin salt, however, with no visible increase in the thermal behavior when the organic anion is sequestrated within LDH gap.
Resumo:
We calculate the relic abundance of mixed axion/neutralino cold dark matter which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/saxion/axino supermultiplet. By numerically solving the coupled Boltzmann equations, we include the combined effects of 1. thermal axino production with cascade decays to a neutralino LSP, 2. thermal saxion production and production via coherent oscillations along with cascade decays and entropy injection, 3. thermal neutralino production and re-annihilation after both axino and saxion decays, 4. gravitino production and decay and 5. axion production both thermally and via oscillations. For SUSY models with too high a standard neutralino thermal abundance, we find the combined effect of SUSY PQ particles is not enough to lower the neutralino abundance down to its measured value, while at the same time respecting bounds on late-decaying neutral particles from BBN. However, models with a standard neutralino underabundance can now be allowed with either neutralino or axion domination of dark matter, and furthermore, these models can allow the PQ breaking scale f(a) to be pushed up into the 10(14) - 10(15) GeV range, which is where it is typically expected to be in string theory models.
Resumo:
Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.
Resumo:
We propose a novel mathematical approach for the calculation of near-zero energy states by solving potentials which are isospectral with the original one. For any potential, families of strictly isospectral potentials (with very different shape) having desirable and adjustable features are generated by supersymmetric isospectral formalism. The near-zero energy Efimov state in the original potential is effectively trapped in the deep well of the isospectral family and facilitates more accurate calculation of the Efimov state. Application to the first excited state in He-4 trimer is presented.
Resumo:
A detailed theoretical study of the 1,7,1l,17-tetraoxa-2,6,12,16-tetraaza-cycloeicosane ligand ([20]AneN(4)O(4)) coordinated to Fe2+, Co2+, Ni2+, Ru2+, Rh2+, and Pd2+ transition metal ions was carried out with the B3LYP method. Two different cases were performed: when nitrogen is the donor atom (1a (q) ) and also with the oxygen as the donor atom (1b (q) ). For all the cases performed in this study 1a (q) structures were always more stable than the 1b (q) ones. Considering each row is possible to see that the energy increases with the increase of the atomic number. The M2+ cation binding energies for the 1a (q) complexes increase with the following order: Fe2+ < Ru2+ < Co2+ < Ni2+ < Rh2+ < Pd2+.
Resumo:
Herein, we report results of calculations based on density functional theory (BP86/TZVP) of a set of isatin-Schiff base copper(II) and related complexes, 1-12, that have shown significant pro-apoptotic activity toward diverse tumor cells. The interaction of the copper(II) cation with different ligands has been investigated at the same level of theory. The strength and character of the Cu(II)-L bonding was characterized by metal-ligand bond lengths, vibrational frequencies, binding energies, ligand deformation energies, and natural population analysis. The metal-ligand bonding situation was also characterized by using two complementary topological approaches, the quantum theory of atoms-in-molecules (QTAIM) and the electron localization function (ELF). The calculated electronic g-tensor and hyperfine coupling constants present significant agreement with the EPR experimental data. The calculated parameters pointed to complex 10 as the most stable among the isatin-Schiff base copper(II) species, in good agreement with experimental data that indicate this complex as the most reactive in the series. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
This work evaluates the efficiency of economic levels of theory for the prediction of (3)J(HH) spin-spin coupling constants, to be used when robust electronic structure methods are prohibitive. To that purpose, DFT methods like mPW1PW91. B3LYP and PBEPBE were used to obtain coupling constants for a test set whose coupling constants are well known. Satisfactory results were obtained in most of cases, with the mPW1PW91/6-31G(d,p)//B3LYP/6-31G(d,p) leading the set. In a second step. B3LYP was replaced by the semiempirical methods PM6 and RM1 in the geometry optimizations. Coupling constants calculated with these latter structures were at least as good as the ones obtained by pure DFT methods. This is a promising result, because some of the main objectives of computational chemistry - low computational cost and time, allied to high performance and precision - were attained together. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The structural distortions resulting from the size mismatch between the Eu2+ luminescent centre and the host Ba2+ cation as well as the electronic structure of BaAl2O4:Eu2+(,Dy3+) were studied using density functional theory (DFT) calculations and synchrotron radiation (SR) luminescence spectroscopy. The modified interionic distances as well as differences in the total energies indicate that Eu2+ prefers the smaller of the two possible Ba sites in the BaAl2O4 host. The calculated Eu2+ 4f(7) and 4f(6)5d(1) ground level energies confirm that the excited electrons can reach easily the conduction band for subsequent trapping. In addition to the green luminescence, a weak blue emission band was observed in BaAl2O4:Eu2+,Dy3+ probably due to the creation of a new Ba2+ site due to the effect of water exposure on the host. (C) 2012 Optical Society of America
Resumo:
A theoretical study of structures of the 1,7,1 l,17-tetraoxa-2,6,12,16-tetraaza-cycloeicosane ligand ([20]AneN(4)O(4)) coordinated to Fe2+, Co2+, Ni2+, Ru2+, Rh2+, and Pd2+ transition metals ions was carried out with the DFT/B3LYP method. Complexes were fully optimized in C-s symmetry with the metal ions coordinated either to nitrogen (1a) or oxygen atoms (1b). For all the cases performed in this work, 1a was always more stable than 1b. Considering each row it is possible to see that the binding energy increases with the atomic number. The M2+ cation binding energies increase in the following order: Fe2+ < Ru2+ < Co2+ < Ni2+ < Rh2+ < Pd2+. In addition, it was observed the preference of Pd2+ and Rh2+ complexes for a tetrahedral arrangement, while Fe2+, Ru2+, Co2+, Ni2+ complexes had a preference for the octahedral arrangement. From the orbital representation results, it was seen that 1b unsymmetrical orbitals may influence the susceptibility over metal ions orientation toward heteroatoms orbitals.
Resumo:
Four liquid crystals (LC) 3,7a-bis(4-alkyloxyphenyl)-7,7a-dihydro-6H-isoxazolo[2,3-d][1,2,4]oxadiazol-6-yl)acetic acid (7a-d) were synthesised and the mesomorphic behaviour reported. The LCs were characterised as 2: 1 bisadducts, which were obtained from a double [3+2] 1,3-dipolar cycloaddition. In the first step, the cycloaddition of 4-alkyloxyphenylnitrile oxide (4a-d) and vinylacetic acid (5) gave the initial unobserved 1:1 cycloadducts 2-[3-(4-alkyloxyphenyl)-4,5-dihydroisoxazol-5-yl]acetic acid (6a-d). In the second step, the addition of a second equivalent of 4 to 6 yielded the 2: 1 bisadducts 7a-d without any traces of 6. All compounds 7a-d were unstable during the transition from the mesophase to the isotropic state upon first heating as evidenced by the large peaks in the differential scanning calorimetry traces. Due to the chemical instability of the compounds upon heating, the transition temperature related to the smectic C to smectic A transitions was acquired by means of an image processing method. X-Ray diffraction experiments were also used to analyse the liquid-crystalline phases. A theoretical calculation was performed using density functional theory (DFT) methods at the PBE1PBE/6-311+G(2d,p) level (with solvent effect) in order to get information about the energetic profile of the 2: 1 cycloaddition. DFT studies revealed that the cycloaddition process is controlled by the HOMO(dipolarophile) - LUMO(1,3-dipole), and that the double [3+2] 1,3-dipolar cycloaddition reaction is quite possible.
Resumo:
Several dosimetric methods have been proposed for estimating red marrow absorbed dose (RMAD) when radionuclide therapy is planned for differentiated thyroid cancer, although to date, there is no consensus as to whether dose calculation should be based on blood-activity concentration or not. Our purpose was to compare RMADs derived from methods that require collecting patients' blood samples versus those involving OLINDA/EXM software, thereby precluding this invasive procedure. This is a retrospective study that included 34 patients under treatment for metastatic thyroid disease. A deviation of 10 between RMADs was found, when comparing the doses from the most usual invasive dosimetric methods and those from OLINDA/EXM. No statistical difference between the methods was discovered, whereby the need for invasive procedures when calculating the dose is questioned. The use of OLINDA/EXM in clinical routine could possibly diminish data collection, thus giving rise to a simultaneous reduction in time and clinical costs, besides avoiding any kind of discomfort on the part of the patients involved.
Resumo:
An electronic and vibrational spectroscopic analysis of p-coumaric acid (HCou) and its deprotonated species was performed by UV-vis and Raman, respectively, and the results were supported by density functional theory (OFT) calculations. Electronic UV-vis spectral data of HCou solutions show that the deprotonation of the carboxyl group (Cou(-)) leads to a blue shift of the lowest energy electronic transition in comparison to the neutral species, whereas the subsequent deprotonation of the phenolic moiety (Cou(2-)) carries out to a more delocalized chromophore. The DFT geometric parameters calculations suggest that the variation in the electronic delocalization for the three organic species is due to different contribution of a quinoid structure that is significantly distorted in the case of Cou(2-). The Raman data of HCou and its sodium salts show that the main spectral features that allow to differentiate the three organic species are those involving the styrene nu(C=C)(sty) vibration at 1600cm(-1) region. Even though the Raman spectra of the sodium salts of Cou(-) and Cou(2-) anions show subtle differences, the appearing of a band at ca. 1598cm(-1) in the Na(2)Cou spectrum, assigned to a mode involving the carboxylate asymmetric stretching, nu(as)(COO), and the styrene stretching, nu(C=C)(sty), is quite characteristic, as confirmed by the theoretical Raman spectrum. Considering that p-coumaric acid is an archetypical phenolic compound with several biological activities that essentially depend upon the medium pH, Raman spectroscopy results reported in this work can provide a proper way to characterize such important phytochemical compound in different protonation states. In order to complement the characterization of the sodium salts, X-ray diffraction (XRD) and thermal analysis were performed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Quantum chemical calculations at the B3LYP/6-31G* level of theory were employed for the structure-activity relationship and prediction of the antioxidant activity of edaravone and structurally related derivatives using energy (E), ionization potential (IP), bond dissociation energy (BDE), and stabilization energies(Delta E-iso). Spin density calculations were also performed for the proposed antioxidant activity mechanism. The electron abstraction is related to electron-donating groups (EDG) at position 3, decreasing the IP when compared to substitution at position 4. The hydrogen abstraction is related to electron-withdrawing groups (EDG) at position 4, decreasing the BDECH when compared to other substitutions, resulting in a better antioxidant activity. The unpaired electron formed by the hydrogen abstraction from the C-H group of the pyrazole ring is localized at 2, 4, and 6 positions. The highest scavenging activity prediction is related to the lowest contribution at the carbon atom. The likely mechanism is related to hydrogen transfer. It was found that antioxidant activity depends on the presence of EDG at the C-2 and C-4 positions and there is a correlation between IP and BDE. Our results identified three different classes of new derivatives more potent than edaravone.
Resumo:
This work proposes a computational tool to assist power system engineers in the field tuning of power system stabilizers (PSSs) and Automatic Voltage Regulators (AVRs). The outcome of this tool is a range of gain values for theses controllers within which there is a theoretical guarantee of stability for the closed-loop system. This range is given as a set of limit values for the static gains of the controllers of interest, in such a way that the engineer responsible for the field tuning of PSSs and/or AVRs can be confident with respect to system stability when adjusting the corresponding static gains within this range. This feature of the proposed tool is highly desirable from a practical viewpoint, since the PSS and AVR commissioning stage always involve some readjustment of the controller gains to account for the differences between the nominal model and the actual behavior of the system. By capturing these differences as uncertainties in the model, this computational tool is able to guarantee stability for the whole uncertain model using an approach based on linear matrix inequalities. It is also important to remark that the tool proposed in this paper can also be applied to other types of parameters of either PSSs or Power Oscillation Dampers, as well as other types of controllers (such as speed governors, for example). To show its effectiveness, applications of the proposed tool to two benchmarks for small signal stability studies are presented at the end of this paper.
Resumo:
The first stage of the photosynthetic process is the extraordinary efficiency of sunlight absorption in the visible region [1]. This region corresponds to the maximum of the spectral radiance of the solar emission. The efficient absorption of visible light is one of the most important characteristics of photosynthetic pigments. In chlorophylls, for example, the absorptions are seen as a strong absorption in the region 400-450 nm in connection with other absorptions with small intensities in the region of 500-600 nm. This work aims at understanding the essential features of the absorption spectrum of photosynthetic pigments, in line with several theoretical studies in the literature [2, 3]. The absorption spectra were calculated for H2-Porphyrin, Mg-Porphyrin, and Zn-Porphyrin, and for H2-Phthalocyanine and Mg-Phthalocyanine with and without the four peripheral eugenol substituents. The geometries were optimized using the B3LYP/6-31+G(d) theoretical model. For the calculation of the absorption spectra different TD-DFT calculations were performed (B3LYP, CAM-B3LYP, O3LYP, M06-2X and BP86) along with CIS (D). For the spectra the basis set 6-311++G (d, p) was used for porphyrins and 6-31+G (d) was used for the other systems. At this stage the solvent effects were considered using the simplified continuum model (PCM). First a comparison between the results using the different methods was made. For the porphyrins the best results compared to experiment (both in position and intensities) are obtained with M06-2X and CIS (D). We also analyze the compatibility of the four-orbital model of Gouterman [4] that states that transitions could be well described by the HOMO-1, HOMO, LUMO, and LUMO+1 molecular orbitals. Our results for H2-Porphyrin shows an agreement with other theoretical results and experimental data [5]. For the phthalocyanines (including the four peripheral eugenol substituents) the results are also in good agreement compared with the experimental results given in ref [6]. Finally, the results show that the inclusion of solvent eÆects gives corrections for the spectral shift in the correct direction but numerically small. References [1] R.E. Blankenship; “Molecular Mechanisms of Photosynthesis", Blackwell Science (2002). [2] P. Jaramillo, K. Coutinho, B.J.C. Cabral and S. Canuto; Chem. Phys. Lett., 516, 250(2011). [3] L. Petit, A. Quartarolo, C. Adamo and N. Russo; J. Phys. Chem. B, 110, 2398(2006). [4] M. J. Gouterman; Mol. Spectr., 6, 138(1961). [5] M. Palummo, C. Hogan, F. Sottile, P. Bagal∂a and A. Rubio; J. Chem. Phys., 131, 084102(2009). [6] E. Agar, S. Sasmaz and A. Agar; Turk. J. Chem., 23, 131(1999).