5 resultados para DEVELOPMENTAL CONTROL

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genotypic, developmental, and environmental factors converge to determine the degree of Crassulacean acid metabolism (CAM) expression. To characterize the signaling events controlling CAM expression in young pineapple (Ananas comosus) plants, this photosynthetic pathway was modulated through manipulations in water availability. Rapid, intense, and completely reversible up-regulation in CAM expression was triggered by water deficit, as indicated by the rise in nocturnal malate accumulation and in the expression and activity of important CAM enzymes. During both up-and down-regulation of CAM, the degree of CAM expression was positively and negatively correlated with the endogenous levels of abscisic acid (ABA) and cytokinins, respectively. When exogenously applied, ABA stimulated and cytokinins repressed the expression of CAM. However, inhibition of water deficit-induced ABA accumulation did not block the up-regulation of CAM, suggesting that a parallel, non-ABA-dependent signaling route was also operating. Moreover, strong evidence revealed that nitric oxide (NO) may fulfill an important role during CAM signaling. Up-regulation of CAM was clearly observed in NO-treated plants, and a conspicuous temporal and spatial correlation was also evident between NO production and CAM expression. Removal of NO from the tissues either by adding NO scavenger or by inhibiting NO production significantly impaired ABA-induced up-regulation of CAM, indicating that NO likely acts as a key downstream component in the ABA-dependent signaling pathway. Finally, tungstate or glutamine inhibition of the NO-generating enzyme nitrate reductase completely blocked NO production during ABA-induced up-regulation of CAM, characterizing this enzyme as responsible for NO synthesis during CAM signaling in pineapple plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Malignant neoplasia of the adrenal cortex is usually associated with very poor prognosis. When adrenocortical neoplasms are diagnosed in the early stages, distinction between carcinoma and adenoma can be very difficult to accomplish, since there is yet no reliable marker to predict tumor recurrence or dissemination. GATA transcription factors play an essential role in the developmental control of cell fate, cell proliferation and differentiation, organ morphogenesis, and tissue-specific gene expression. Normal mouse adrenal cortex expresses GATA-6 while its malignant counterpart only expresses GATA-4. The goal of the present study was to assess whether this reciprocal change in the expression of GATA factors might be relevant for predicting the prognosis of human adrenocortical neoplasms. Since human adrenal cortices express luteinizing hormone (LH/hCG) receptor and the gonadotropins are known to up-regulate GATA-4 in gonadal tumor cell lines, we also studied the expression of LH/hCG receptor. Methods We conducted a study on 13 non-metastasizing (NM) and 10 metastasizing/recurrent (MR) tumors obtained from a group of twenty-two adult and pediatric patients. The expression of GATA-4, GATA-6, and LH/hCG receptor (LHR) in normal and tumoral human adrenal cortices was analysed using reverse transcriptase-polymerase chain reaction (RT-PCR) complemented by dot blot hybridization. Results Messenger RNA for GATA-6 was detected in normal adrenal tissue, as well as in the totality of NM and MR tumors. GATA-4, by its turn, was detected in normal adrenal tissue, in 11 out of 13 NM tumors, and in 9 of the 10 MR tumors, with larger amounts of mRNA found among those presenting aggressive clinical behavior. Transcripts for LH receptor were observed both in normal tissue and neoplasms. A more intense LHR transcript accumulation was observed on those tumors with better clinical outcome. Conclusion Our data suggest that the expression of GATA-6 in human adrenal cortex is not affected by tumorigenesis. GATA-4 expression is more abundant in MR tumors, while NM tumors express more intensely LHR. Further studies with larger cohorts are needed to test whether relative expression levels of LHR or GATA-4 might be used as prognosis predictors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coccidiosis of the domestic fowl is a worldwide disease caused by seven species of protozoan parasites of the genus Eimeria. The genome of the model species, Eimeria tenella, presents a complexity of 55-60 MB distributed in 14 chromosomes. Relatively few studies have been undertaken to unravel the complexity of the transcriptome of Eimeria parasites. We report here the generation of more than 45,000 open reading frame expressed sequence tag (ORESTES) cDNA reads of E. tenella, Eimeria maxima and Eimeria acervulina, covering several developmental stages: unsporulated oocysts, sporoblastic oocysts, sporulated oocysts, sporozoites and second generation merozoites. All reads were assembled to constitute gene indices and submitted to a comprehensive functional annotation pipeline. In the case of E. tenella, we also incorporated publicly available ESTs to generate an integrated body of information. Orthology analyses have identified genes conserved across different apicomplexan parasites, as well as genes restricted to the genus Eimeria. Digital expression profiles obtained from ORESTES/EST countings, submitted to clustering analyses, revealed a high conservation pattern across the three Eimeria spp. Distance trees showed that unsporulated and sporoblastic oocysts constitute a distinct clade in all species, with sporulated oocysts forming a more external branch. This latter stage also shows a close relationship with sporozoites, whereas first and second generation merozoites are more closely related to each other than to sporozoites. The profiles were unambiguously associated with the distinct developmental stages and strongly correlated with the order of the stages in the parasite life cycle. Finally, we present The Eimeria Transcript Database (http://www.coccidia.icb.usp.br/eimeriatdb), a website that provides open access to all sequencing data, annotation and comparative analysis. We expect this repository to represent a useful resource to the Eimeria scientific community, helping to define potential candidates for the development of new strategies to control coccidiosis of the domestic fowl. (C) 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of the developmental anomalies observed in cloned animals are related to foetal and placental overgrowth, a phenomenon known as the 'large offspring syndrome' (LOS) in ruminants. It has been hypothesized that the epigenetic control of imprinted genes, that is, genes that are expressed in a parental-specific manner, is at the root of LOS. Our recent research has focused on understanding epigenetic alterations to imprinted genes that are associated with assisted reproductive technologies (ART), such as early embryo in vitro culture (IVC) and somatic cell nuclear transfer (SCNT) in cattle. We have sought and identified single nucleotide polymorphisms in Bos indicus DNA useful for the analysis of parental-specific alleles and their respective transcripts in tissues from hybrid embryos derived by crossing Bos indicus and Bos taurus cattle. By analysing differentially methylated regions (DMRs) of imprinted genes SNRPN, H19 and the IGF2R in cattle, we demonstrated that there is a generalized hypomethylation of the imprinted allele and the biallelic expression of embryos produced by SCNT when compared to the methylation patterns observed in vivo (artificially inseminated). Together, these results indicate that imprinting marks are erased during the reprogramming of the somatic cell nucleus during early development, indicating that such epigenetic anomalies may play a key role in mortality and morbidity of cloned animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.