13 resultados para Dégradation de CD4
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4(+) T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4(+) T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4(+) T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IA(b) and IA(d). Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-gamma secretion against 11 out of the 27 peptides in BALB/c mice; CD4(+) and CD8(+) T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4(+) and CD8(+) T cells, able to simultaneously proliferate and produce IFN-gamma and TNF-alpha, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS.
Resumo:
The diagnosis of T-cell large granular lymphocytic leukemia in association with other B-cell disorders is uncommon but not unknown. However, the concomitant presence of three hematological diseases is extraordinarily rare. We report an 88-year-old male patient with three simultaneous clonal disorders, that is, CD4+/CD8(weak) T-cell large granular lymphocytic leukemia, monoclonal gammopathy of unknown significance and monoclonal B-cell lymphocytosis. The patient has only minimal complaints and has no anemia, neutropenia or thrombocytopenia. Lymphadenopathy and hepatosplenomegaly were not present. The three disorders were characterized by flow cytometry analysis, and the clonality of the T-cell large granular lymphocytic leukemia was confirmed by polymerase chain reaction. Interestingly, the patient has different B-cell clones, given that plasma cells of monoclonal gammopathy of unknown significance exhibited a kappa light-chain restriction population and, on the other hand, B-lymphocytes of monoclonal B-cell lymphocytosis exhibited a lambda light-chain restriction population. This finding does not support the antigen-driven hypothesis for the development of multi-compartment diseases, but suggests that T-cell large granular lymphocytic expansion might represent a direct antitumor immunological response to both B-cell and plasma-cell aberrant populations, as part of the immune surveillance against malignant neoplasms.
Resumo:
The transcription factor B lymphocyte induced maturation protein-1 (Blimp-1) plays important roles in embryonic development and immunity. Blimp-1 is required for the differentiation of plasma cells, and mice with T cell specific deletion of Blimp-1 (Blimp-1CKO mice) develop a fatal inflammatory response in the colon. Previous work demonstrated that lack of Blimp-1 in CD4(+) and CD8(+) T cells leads to intrinsic functional defects, but little is known about the functional role of Blimp-1 in regulating differentiation of Th cells in vivo and their contribution to the chronic intestinal inflammation observed in the Blimp1CKO mice. In this study, we show that Blimp-1 is required to restrain the production of the inflammatory cytokine IL-17 by Th cells in vivo. Blimp-1CKO mice have greater numbers of IL-17 producing TCR beta(+)CD4(+)cells in lymphoid organs and in the intestinal mucosa. The increase in IL-17 producing cells was not restored to normal levels in wild-type and Blimp-1CKO mixed bone marrow chimeric mice, suggesting an intrinsic role for Blimp-1 in constraining the production of IL-17 in vivo. The observation that Blimp-1 deficient CD4(+) T cells are more prone to differentiate into IL-17(+)/IFN-gamma(+) cells and cause severe colitis when transferred to Rag1-deficient mice provides further evidence that Blimp-1 represses IL-17 production. Analysis of Blimp-1 expression at the single cell level during Th differentiation reveals that Blimp-1 expression is induced in Th1 and Th2 but repressed by TGF-beta in Th17 cells. Collectively, the results described here establish a new role for Blimp-1 in regulating IL-17 production in vivo. The Journal of Immunology, 2012,189: 5682-5693.
Resumo:
While human immunodeficiency virus (HIV)-1 chemokine co-receptors 5 tropism and the GWGR motif in the envelope third variable region (V3 loop) have been associated with a slower disease progression, their influence on antiretroviral response remains unclear. The impact of baseline V3 characteristics on treatment response was evaluated in a randomised, double blind, prospective cohort study with patients initiating highly active antiretroviral therapy with lopinavir or efavirenz plus azithothymidine/3TC (1:1) over 48 weeks. Similar virological and immunological responses were observed for both treatment regimens. The 43 individuals had a mean baseline CD4 T cell count of 119 cells/mm(3) [standard deviation (SD) = 99] and a mean viral load of 5.09 log(10) copies/mL (SD = 0.49). The GWGR motif was not associated with a CD4 T cell response, but predicted R5 tropism by the geno2pheno([clinical20%]) algorithm correlated with higher CD4 T cell levels at all monitoring points (p < 0.05). Moreover, higher false-positive rates (FPR) values from this analysis revealed a strong correlation with CD4 T cell recovery (p < 0.0001). Transmitted drug resistance mutations, documented in 3/41 (7.3%) cases, were unrelated to the assigned antiretroviral regimen and had no impact on patient outcomes. In conclusion, naive HIV-1 R5 infected patients exhibited higher CD4 T cell counts at baseline; this difference was sustained throughout therapy. The geno2pheno[clinical] option FPR positively correlated with CD4 T cell gain and may be useful in predicting CD4 T cell recovery.
Resumo:
CD4(+) Foxp3(+) regulatory T cells inhibit the production of interferon-?, which is the major mediator of protection against Mycobacterium tuberculosis infection. In this study, we evaluated whether the protection conferred by three different vaccines against tuberculosis was associated with the number of spleen and lung regulatory T cells. We observed that after homologous immunization with the 65 000 molecular weight heat-shock protein (hsp 65) DNA vaccine, there was a significantly higher number of spleen CD4(+) Foxp3(+) cells compared with non-immunized mice. Heterologous immunization using bacillus Calmette Guerin (BCG) to prime and DNA-hsp 65 to boost (BCG/DNA-hsp 65) or BCG to prime and culture filtrate proteins (CFP)-CpG to boost (BCG/CFP-CpG) induced a significantly higher ratio of spleen CD4(+)/CD4(+) Foxp3(+) cells compared with non-immunized mice. In addition, the protection conferred by either the BCG/DNA-hsp 65 or the BCG/CFP-CpG vaccines was significant compared with the DNA-hsp 65 vaccine. Despite the higher ratio of spleen CD4(+)/CD4(+) Foxp3(+) cells found in BCG/DNA-hsp 65-immunized or BCG/CFP-CpG-immunized mice, the lungs of both groups of mice were better preserved than those of DNA-hsp 65-immunized mice. These results confirm the protective efficacy of BCG/DNA-hsp 65 and BCG/CFP-CpG heterologous prime-boost vaccines and the DNA-hsp 65 homologous vaccine. Additionally, the prime-boost regimens assayed here represent a promising strategy for the development of new vaccines to protect against tuberculosis because they probably induce a proper ratio of CD4(+) and regulatory (CD4(+) Foxp3(+)) cells during the immunization regimen. In this study, this ratio was associated with a reduced number of regulatory cells and no injury to the lungs.
Resumo:
Problem To evaluate CD4+CD25highFoxp3+ cells and IL-6, IL-10, IL-17, and TGF-beta in the peritoneal fluid of women with endometriosis. Method of study A total of ninety-eight patients were studied: endometriosis (n = 70) and control (n = 28). First, peritoneal fluid lymphocytes were isolated, and CD4+CD25high cells were identified using flow cytometry. Then, RT-PCR was performed to verify Foxp3 expression in these cells. Also, IL-6, IL-10, IL-17, and TGF-beta concentration was determined. Results Of all the lymphocytes in the peritoneal fluid of women with endometriosis, 36.5% (median) were CD4+CD25high compared to only 1.15% (median) in the control group (P < 0.001). Foxp3 expression was similarly elevated in patients with the disease compared to those without (median, 50 versus 5; P < 0.001). IL-6 and TGF-beta were higher in endometriosis group (IL-6: 327.5 pg/mL versus 195.5 pg/mL; TGF-beta: 340 pg/mL versus 171.5 pg/mL; both P < 0.001). IL-10 and IL-17 showed no significant differences between the two groups. Conclusion The peritoneal fluid of patients with endometriosis had a higher percentage of CD4+CD25highFoxp3+ cells and also higher levels of IL-6 and TGF-beta compared to women without the disease. These findings suggest that CD4+CD25highFoxp3+ cells may play a role in the pathogenesis of endometriosis.
Resumo:
DCs orchestrate immune responses contributing to the pattern of response developed. In cancer, DCs may play a dysfunctional role in the induction of CD4(+)CD25(+) Foxp3(+) Tregs, contributing to immune evasion. We show here that Mo-DCs from breast cancer patients show an altered phenotype and induce preferentially Tregs, a phenomenon that occurred regardless of DC maturation stimulus (sCD40L, cytokine cocktail, TNF-alpha, and LPS). The Mo-DCs of patients induced low proliferation of allogeneic CD3(+)CD25(neg)Foxp3(neg) cells, which after becoming CD25(+), suppressed mitogen-stimulated T cells. Contrastingly, Mo-DCs from healthy donors induced a stronger proliferative response, a low frequency of CD4(+)CD25(+)Foxp3(+) with no suppressive activity. Furthermore, healthy Mo-DCs induced higher levels of IFN-gamma, whereas the Mo-DCs of patients induced higher levels of bioactive TGF-beta 1 and IL-10 in cocultures with allogeneic T cells. Interestingly, TGF-beta 1 blocking with mAb in cocultures was not enough to completely revert the Mo-DCs of patients' bias toward Treg induction. Altogether, these findings should be considered in immunotherapeutic approaches for cancer based on Mo-DCs. J. Leukoc. Biol. 92: 673-682; 2012.
Resumo:
The pathology of relapsing-remitting multiple sclerosis (RR-MS) is largely attributed to activated autoreactive effector T lymphocytes. The influence of microRNAs on the immune response has been shown to occur in different pathways of lymphocyte differentiation and function. Here, the expression of the miRNAs miR-15a/161 in PBMC, CD4(+), and CD8(+) from RR-MS patients has been investigated. BCL2, a known miR-15a/16-1 target, has also been analyzed. The results have shown that miR-15a/16-1 is downregulated in CD4(+) T cells, whereas BCL2 is highly expressed in RR-MS patients only. Our data suggest that miR-15a/16-1 can also modulate the BCL2 gene expression in CD4(+) T cells from RR-MS patients, thereby affecting apoptosis processes.
Resumo:
Background: The first stages of HIV-1 infection are essential to establish the diversity of virus population within host. It has been suggested that adaptation to host cells and antibody evasion are the leading forces driving HIV evolution at the initial stages of AIDS infection. In order to gain more insights on adaptive HIV-1 evolution, the genetic diversity was evaluated during the infection time in individuals contaminated by the same viral source in an epidemic cluster. Multiple sequences of V3 loop region of the HIV-1 were serially sampled from four individuals: comprising a single blood donor, two blood recipients, and another sexually infected by one of the blood recipients. The diversity of the viral population within each host was analyzed independently in distinct time points during HIV-1 infection. Results: Phylogenetic analysis identified multiple HIV-1 variants transmitted through blood transfusion but the establishing of new infections was initiated by a limited number of viruses. Positive selection (d(N)/d(S)>1) was detected in the viruses within each host in all time points. In the intra-host viruses of the blood donor and of one blood recipient, X4 variants appeared respectively in 1993 and 1989. In both patients X4 variants never reached high frequencies during infection time. The recipient, who X4 variants appeared, developed AIDS but kept narrow and constant immune response against HIV-1 during the infection time. Conclusion: Slowing rates of adaptive evolution and increasing diversity in HIV-1 are consequences of the CD4+ T cells depletion. The dynamic of R5 to X4 shift is not associated with the initial amplitude of humoral immune response or intensity of positive selection.
Resumo:
While human immunodeficiency virus (HIV)-1 chemokine co-receptors 5 tropism and the GWGR motif in the envelope third variable region (V3 loop) have been associated with a slower disease progression, their influence on antiretroviral response remains unclear. The impact of baseline V3 characteristics on treatment response was evaluated in a randomised, double blind, prospective cohort study with patients initiating highly active antiretroviral therapy with lopinavir or efavirenz plus azithothymidine/3TC (1:1) over 48 weeks. Similar virological and immunological responses were observed for both treatment regimens. The 43 individuals had a mean baseline CD4 T cell count of 119 cells/mm³ [standard deviation (SD) = 99] and a mean viral load of 5.09 log10 copies/mL (SD = 0.49). The GWGR motif was not associated with a CD4 T cell response, but predicted R5 tropism by the geno2pheno[clinical20%] algorithm correlated with higher CD4 T cell levels at all monitoring points (p < 0.05). Moreover, higher false-positive rates (FPR) values from this analysis revealed a strong correlation with CD4 T cell recovery (p < 0.0001). Transmitted drug resistance mutations, documented in 3/41 (7.3%) cases, were unrelated to the assigned antiretroviral regimen and had no impact on patient outcomes. In conclusion, naÏve HIV-1 R5 infected patients exhibited higher CD4 T cell counts at baseline; this difference was sustained throughout therapy. The geno2pheno[clinical] option FPR positively correlated with CD4 T cell gain and may be useful in predicting CD4 T cell recovery.
Resumo:
It is well established that female sex hormones have a pivotal role in inflammation. For instance, our group has previously reported that estradiol has proinflammatory actions during allergic lung response in animal models. Based on these findings, we have decided to further investigate whether T regulatory cells are affected by female sex hormones absence after ovariectomy. We evaluated by flow cytometry the frequencies of CD4+Foxp3+ T regulatory cells (Tregs) in central and peripheral lymphoid organs, such as the thymus, spleen and lymph nodes. Moreover, we have also used the murine model of allergic lung inflammation a to evaluate how female sex hormones would affect the immune response in vivo. To address that, ovariectomized or sham operated female Balb/c mice were sensitized or not with ovalbumin 7 and 14 days later and subsequently challenged twice by aerosolized ovalbumin on day 21. Besides the frequency of CD4+Foxp3+ T regulatory cells, we also measured the cytokines IL-4, IL-5, IL-10, IL-13 and IL-17 in the bronchoalveolar lavage from lungs of ovalbumine challenged groups. Our results demonstrate that the absence of female sex hormones after ovariectomy is able to increase the frequency of Tregs in the periphery. As we did not observe differences in the thymus-derived natural occurring Tregs, our data may indicate expansion or conversion of peripheral adaptive Tregs. In accordance with Treg suppressive activity, ovariectomized and ovalbumine-sensitized and challenged animals had significantly reduced lung inflammation. This was observed after cytokine analysis of lung explants showing significant reduction of pro-inflammatory cytokines, such as IL-4, IL-5, IL-13 and IL-17, associated to increased amount of IL-10. In summary, our data clearly demonstrates that OVA sensitization 7 days after ovariectomy culminates in reduced lung inflammation, which may be directly correlated with the expansion of Tregs in the periphery and further higher IL-10 secretion in the lungs.