2 resultados para Cyril, Saint, Apostle of the Slavs, ca. 827-869.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cretaceous Banhado alkaline complex in southeastern Brazil presents two potassic SiO2-undersaturated series. The high-Ca magmatic series consist of initially fractionated olivine (Fo(92-91)) + diopside (Wo(48-43)En(49-35)Ae(0-7)), as evidenced by the presence of xenocrysts and xenoliths. In that sequence, diopside (Wo(47-38)En(46-37)Ae(0-8)) + phlogopite + apatite + perovskite (Prv(> 92)) crystallized to form the phlogopite melteigite and led to the Ca enrichment of the magma. Diopside (Wo(47-41)En(32-24) Ae(3-14)) continued to crystallize as an early mafic mineral, followed by nepheline (Ne(74.8-70.1)Ks(26.3-21.2)Qz(7.6-0.9)) and leucite (Lc(65-56)) and subsequently by melanite and potassic feldspar (Or(85-99)Ab(1-7)) to form melanite ijolites, wollastonite-melanite urtites and melanite-nepheline syenites. Melanite-pseudoleucite-nepheline syenites are interpreted to be a leucite accumulation. Melanite nephelinite dykes are believed to represent some of the magmatic differentiation steps. The low-Ca magmatic series is representative of a typical fractionation of aegirine-augite (Wo(36-29)En(25-4)Ae(39-18)) + alkali feldspar (Or(57-96)Ab(3-43)) + nepheline (Ne(76.5-69.0)Ks(19.9-14.4)Qz(15.1-7.7)) + titanite from phonolite magma. The evolution of this series from potassic nepheline syenites to sodic sodalite syenites and sodalitolites is attributed to an extensive fractionation of potassic feldspar, which led to an increase of the NaCl activity in the melt during the final stages forming sodalite-rich rocks. Phonolite dykes followed a similar evolutionary process and also registered some crustal assimilation. The mesocratic nepheline syenites showed interactions with phlogopite melteigites, such as compatible trace element enrichments and the presence of diopside xenocrysts, which were interpreted to be due to a mixing/mingling process of phonolite and nephelinite magmas. The geochemical data show higher TiO2 and P2O5 contents and lower SiO2 contents for the high-Ca series and different LILE evolution trends and REE chondrite-normalized patterns as compared to the low-Ca series. The Sr-87/Sr-86, Nd-143/Nd-144, Pb-206/Pb-204 and Pb-208/Pb-204 initial ratios for the high-Ca series (0.70407-0.70526, 0.51242-0.51251, 17.782-19.266 and 38.051-39.521, respectively) were slightly different from those of the low-Ca series (0.70542-0.70583, 0.51232-0.51240, 17.758-17.772 and 38.021-38.061, respectively). For both series, a CO2-rich potassic metasomatized lithospheric mantle enriched the source with rutile-bearing phlogopite clinopyroxenite veins. Kamafugite-like parental magma is attributed to the high-Ca series with major contributions from the melting of the veins. Potassic nephelinite-like parental magma is assigned to the low-Ca series, where the metasomatized wall-rock played a more significant role in the melting process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process.