2 resultados para Cyclicity
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background Neonatal STZ treatment induces a state of mild hyperglycemia in adult rats that disrupts metabolism and maternal/fetal interactions. The aim of this study was investigate the effect of neonatal STZ treatment on the physical development, behavior, and reproductive function of female Wistar rats from infancy to adulthood. Methods At birth, litters were assigned either to a Control (subcutaneous (s.c.) citrate buffer, n = 10) or STZ group, (streptozotocin (STZ) - 100 mg/kg-sc, n = 6). Blood glucose levels were measured on postnatal days (PND) 35, 84 and 120. In Experiment 1 body weight, length and the appearance of developmental milestones such as eye and vaginal opening were monitored. To assess the relative contribution of the initial and long term effects of STZ treatment this group was subdivided based on blood glucose levels recorded on PND 120: STZ hyperglycemic (between 120 and 300 mg/dl) and STZ normoglycemic (under 120 mg/dl). Behavioral activity was assessed in an open field on PND 21 and 75. In Experiment 2 estrous cyclicity, sexual behavior and circulating gonadotropin, ovarian steroid, and insulin levels were compared between control and STZ-hyperglycemic rats. In all measures the litter was the experimental unit. Parametric data were analyzed using one-way or, where appropriate, two-way ANOVA and significant effects were investigated using Tukey’s post hoc test. Fisher’s exact test was employed when data did not satisfy the assumption of normality e.g. presence of urine and fecal boli on the open field between groups. Statistical significance was set at p < 0.05 for all data. Results As expected neonatal STZ treatment caused hyperglycemia and hypoinsulinemia in adulthood. STZ-treated pups also showed a temporary reduction in growth rate that probably reflected the early loss of circulating insulin. Hyperglycemic rats also exhibited a reduction in locomotor and exploratory behavior in the open field. Mild hyperglycemia did not impair gonadotropin levels or estrous cylicity but ovarian steroid concentrations were altered. Conclusions In female Wistar rats, neonatal STZ treatment impairs growth in infancy and results in mild hyperglycemia/hypoinsulinemia in adulthood that is associated with changes in the response to a novel environment and altered ovarian steroid hormone levels.
Resumo:
The objective of this study was to investigate the effects of eCG and temporary calf removal (TCR) associated with progesterone (P4) treatment on the dynamics of follicular growth, CL size, and P4 concentrations in cyclic (n ¼ 36) and anestrous (n ¼ 30) Nelore cows. Cyclic (C) and anestrous (A) cows were divided into three groups. The control group received 2 mg of estradiol benzoate via intramuscular (IM) injection and an intravaginal device containing 1.9 g of P4 on Day 0. On Day 8, the device was removed, and the animals received 12.5 mg of dinoprost tromethamine IM. After 24 hours, the animals received 1 mg of estradiol benzoate IM. In the eCG group, cows received the same treatment described for the control group but also received 400 UI of eCG at the time of device removal. In the TCR group, calves were separated from the cows for 56 hours after device removal. Ultrasound exams were performed every 24 hours after device removal until the time of ovulation and 12 days after ovulation to measure the size of the CL. On the same day as the CL measurement, blood was collected to determine the plasma P4 level. Statistical analyses were performed with a significance level of P ≤ 0.05. In cyclic cows, the presence of the CL at the beginning of protocol resulted in a smaller follicle diameter at the time of device removal (7.4 ± 0.3 mm in cows with CL vs. 8.9 ± 0.4 mm in cows without CL; P ¼ 0.03). All cows ovulated within 72 hours after device removal. Anestrous cows treated with eCG or TCR showed follicle diameter at fixed-timed artificial insemination (A-eCG 10.2 ± 0.3 and A-TCR 10.3 ± 0.5 mm) and follicular growth rate (A-eCG 1.5 ± 0.2 and A-TCR 1.3 ± 0.1 mm/day) similar to cyclic cows (C-eCG 11.0 ± 0.6 and C-TCR 12.0 ± 0.5 mm) and (C-eCG 1.4 ± 0.2 and C-TCR 1.6 ± 0.2 mm/day, respectively; P ≤ 0.05). Despite the similarities in CL size, the average P4 concentration was higher in the A-TCR (9.6 ± 1.4 ng/mL) than in the A-control (4.0 ± 1.0 ng/mL) and C-TCR (4.4 ± 1.0 ng/mL) groups (P < 0.05). From these results, we conclude that eCG treatment and TCR improved the fertility of anestrous cows by providing follicular growth rates and size of dominant follicles similar to cyclic cows. Additionally, TCR increases the plasma concentrations of P4 in anestrous cows