26 resultados para Cultured cells
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Our goal was to demonstrate the in vivo tumor specific accumulation of crotamine, a natural peptide from the venom of the South American rattlesnake Crotalus durissus terrificus, which has been characterized by our group as a cell penetrating peptide with a high specificity for actively proliferating cells and with a concentration-dependent cytotoxic effect. Crotamine cytotoxicity has been shown to be dependent on the disruption of lysosomes and subsequent activation of intracellular proteases. In this work, we show that the cytotoxic effect of crotamine also involves rapid intracellular calcium release and loss of mitochondrial membrane potential as observed in real time by confocal microscopy. The intracellular calcium overload induced by crotamine was almost completely blocked by thapsigargin. Microfluorimetry assays confirmed the importance of internal organelles, such as lysosomes and the endoplasmic reticulum, as contributors for the intracellular calcium increase, as well as the extracellular medium. Finally, we demonstrate here that crotamine injected intraperitoneally can efficiently target remote subcutaneous tumors engrafted in nude mice, as demonstrated by a noninvasive optical imaging procedure that permits in vivo real-time monitoring of crotamine uptake into tumor tissue. Taken together, our data indicate that the cytotoxic peptide crotamine can be used potentially for a dual purpose: to target and detect growing tumor tissues and to selectively trigger tumor cell death.
Resumo:
The aim of this study was to investigate the osteoblastic activity of cells derived from the midpalatal suture upon treatment with low-level laser therapy (LLLT) after rapid maxillary expansion (RME). A total of 30 rats were divided into two groups: experimental I (15 rats with RME without LLLT) and experimental II (15 rats with RME + LLLT). The rats were euthanized at 24 h, 48 h, and 7 days after RME, when the osteoblastic cells derived from the rats' midpalatal suture were explanted. These cells were cultured for periods up to 17 days, and then in vitro osteogenesis parameters and gene expression markers were evaluated. The cellular doubling time in the proliferative stage (3-7 days) was decreased in cultured cells harvested from the midpalatal suture at 24 and 48 h after RME + LLLT, as indicated by the increased growth of the cells in a culture. Alkaline phosphatase activity at days 7 and 14 of the culture was increased by LLLT in cells explanted from the midpalatal suture at 24 and 48 h and 7 days after RME. The mineralization at day 17 was increased by LLLT after RME in all periods. Results from the real-time PCR demonstrated that cells harvested from the LLLT after RME group showed higher levels of ALP, Runx2, osteocalcin, type I collagen, and bone sialoprotein mRNA than control cells. More pronounced effects on ALP activity, mineralization, and gene expression of bone markers were observed at 48 h after RME and LLLT. These results indicate that the LLLT applied after RME is able to increase the proliferation and the expression of an osteoblastic phenotype in cells derived from the midpalatal suture.
Resumo:
Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.
Resumo:
Interferon-gamma (IFN-gamma) mediates diverse functions in bone marrow-derived phagocytes, including phagocytosis and microbe destruction. This cytokine has also been detected at implantation sites under both physiological and pathological conditions in many different species. At these particular sites, the outermost embryonic cell layer in close contact with the maternal tissues, the trophoblast exhibits intense phagocytic activity. To determine whether IFN-gamma affects phagocytosis of mouse-trophoblast cells, ectoplacental cone-derived trophoblast was cultured and evaluated for erythrophagocytosis. Phagocytic activity was monitored ultrastructurally and expressed as percentage of phagocytic trophoblast in total trophoblast cells. Conditioned medium from concanavalin-A-stimulated spleen cells significantly enhanced trophoblast phagocytosis. This effect was blocked by pre-incubation with an anti-IFN-gamma neutralizing antibody. Introduction of mouse recombinant IFN-gamma (mrIFN-gamma) to cultures did not increase cell death, but augmented the percentage of phagocytic cells in a dose-dependent manner. Ectoplacental cones from mice deficient for IFN-gamma receptor alpha-chain showed a significant decrease of the phagocytosis, even under mrIFN-gamma stimulation, suggesting that IFN-gamma-induced phagocytosis are receptor-mediated. Reverse transcriptase-PCR analyses confirmed the presence of mRNA for IFN-gamma receptor alpha and beta-chains in trophoblast cells and detected a significant increase in the mRNA levels of IFN-gamma receptor beta-chain, mainly, when cultured cells were exposed to IFN-gamma. Immunohistochemistry and Western blot analyses also revealed protein expression of the IFN-gamma receptor alpha-chain. These results suggest that IFN-gamma may participate in the phagocytic activation of the mouse trophoblast, albeit the exact mechanism was not hereby elucidated. Protective and/or nutritional fetal benefit may result from this physiological response. In addition, our data also shed some light on the understanding of trophoblast tolerance to inflammatory/immune cytokines during normal gestation.
Resumo:
This study evaluated the influence of fluoride on cell viability and activity of matrix metalloproteinases (MMP) -2 and -9 secreted by preosteoblasts. Preosteoblasts (MC3T3-E1 murine cell line) were cultured in MEM medium supplement with 10% Fetal Bovine Serum (FBS) and nucleosides/ribonucleosides without ascorbic acid. Adherent cells were treated with different concentrations of F (as sodium fluoride-NaF) in medium (5 x 10-6 M, 10-5 M, 10-4 M and 10-3 M) for 24, 48, 72 and 96 h at 37ºC, 5% CO2. Control cells were cultivated in MEM only. After each period, preosteoblast viability was assessed by MTT assay. MMP-2 and -9 activities were performed by gel zymography. Also, alkaline phosphatase (ALP) activity was quantified by colorimetry in all experimental groups. It was shown that cultured cells with the highest dose of F (10-3 M) for 96 h decreased preosteoblast viability while lower doses of F did not alter it, when compared to untreated cells. No differences were observed in ALP activity among groups. Moreover, compared to control, the treatment of cells with F at low dose slightly increased MMP-2 and -9 activities after 24 h. It was concluded that F modulates preosteoblast viability in a dose-dependent manner and also may regulate extracellular matrix remodeling.
Resumo:
Background: Since noradrenergic innervation was described in the ovarian follicle, the actions of the intraovarian catecholaminergic system have been the focus of a variety of studies. We aimed to determine the gonadotropin-independent effects of the catecholamine norepinephrine (NE) in the steroid hormone profile of a serum-free granulosa cell (GC) culture system in the context of follicular development and dominance. Methods: Primary bovine GCs were cultivated in a serum-free, chemically defined culture system supplemented with 0.1% polyvinyl alcohol. The culture features were assessed by hormone measurements and ultrastructural characteristics of GCs. Results: GCs produced increasing amounts of estradiol and pregnenolone for 144h and maintained ultrastructural features of healthy steroidogenic cells. Progesterone production was also detected, although it significantly increased only after 96h of culture. There was a highly significant positive correlation between estradiol and pregnenolone production in high E2-producing cultures. The effects of NE were further evaluated in a dose response study. The highest tested concentration of NE (10 (-7) M) resulted in a significant increase in progesterone production, but not in estradiol or pregnenolone production. The specificity of NE effects on progesterone productio n was further investigated by incubating GCs with propranolol (10 (-8) M), a non-selective beta-adrenergic antagonist. Conclusions: The present culture system represents a robust model to study the impact of intrafollicular factors, such as catecholamines, in ovarian steroidogenesis and follicular development. The results of noradrenergic effects in the steroidogenesis of GC have implications on physiological follicular fate and on certain pathological ovarian conditions such as cyst formation and anovulation.
Resumo:
The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1?h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria-derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF-?B activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF-2-DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthinexanthine oxidase), a mixture of NOS inhibitors and SOD-PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise-induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. J. Cell. Physiol. 227: 25112518, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
The effect of melatonin during in vitro maturation (IVM) on DNA damage of cumulus cells (CCs) from bovine cumulus-oocyte complexes (COCs) and embryo development was evaluated. COCs from abattoir ovaries were cultured in maturation medium (MM) with 0.5 mu g/ml FSH and 5.0 mu g/ml LH (FSH-LH); 10(-9) M melatonin (MEL) or FSH-LH + MEL (FSH-LH-MEL). After 24 h of in vitro maturation, the CCs surrounding the oocyte were subjected to DNA analysis by Comet assay. After in vitro fertilization and in vitro embryo culture, the embryo development rates were evaluated on day 2 post insemination (cleavage) and days 7-8 (blastocyst). The percentage of CCs with no DNA damage was significantly superior in MEL group (37.6 +/- 2.4) than in FSH-LH-MEL (28.0 +/- 2.4) and FSH-LH (17.8 +/- 2.41) groups. Cleavage and blastocysts rates were similar among groups. Melatonin during IVM protects the CCs from DNA damage but this effect did not influence embryo development in vitro. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Several biological events are controlled by Hedgehog (Hh) signaling, including osteoblast phenotype development. This study aimed at evaluating the gene expression profile of human mesenchymal stem cells (hMSCs) treated with the Hh agonist, purmorphamine, focusing on Hh signaling and osteoblast differentiation. hMSCs from bone marrow were cultured in non-osteogenic medium with or without purmorphamine (2 mu M) for periods of up to 14 days. Purmorphamine up-regulated gene expression of the mediators of Hh pathway, SMO, PTCH1, GLI1, and GLI2. The activation of Hh pathway by purmorphamine increased the expression of several genes (e.g., RUNX2 and BMPs) related to osteogenesis. Our results indicated that purmorphamine triggers Hh signaling pathway in hMSCs, inducing an increase in the expression of a set of genes involved in the osteoblast differentiation program. Thus, we conclude that Hh is a crucial pathway in the commitment of undifferentiated cells to the osteoblast lineage. J. Cell. Biochem. 113: 204208, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Cytochemical localization of hydrogen peroxide-generating sites suggests NADPH (nicotinamide adenine dinucleotide 3-phosphate [ reduced form]) oxidase expression at the maternal-fetal interface. To explore this possibility, we have characterized the expression and activity of the NADPH oxidase complex in trophoblast cells during the postimplantation period. Implantation sites and ectoplacental cones (EPCs) from 7.5-gestational day embryos from CD1 mice were used as a source for expression analyses of NADPH oxidase catalytic and regulatory subunits. EPCs grown in primary culture were used to investigate the production of superoxide anion through dihydroxyethidium oxidation in confocal microscopy and immunohistochemical assays. NADPH subunits Cybb (gp91phox), Cyba (p22phox), Ncf4 (p40phox), Ncf1 (p47phox), Ncf2 (p67phox), and Rac1 were expressed by trophoblast cells. The fundamental subunits of membrane CYBB and cytosolic NCF2 were markedly upregulated after phorbol-12-myristate-13-acetate (PMA) treatment, as detected by quantitative real-time PCR, Western blotting, and immunohistochemistry. Fluorescence microscopy imaging showed colocalization of cytosolic and plasma membrane NADPH oxidase subunits mainly after PMA treatment, suggesting assembly of the complex after enzyme activation. Cultured EPCs produced superoxide in a NADPH-dependent manner, associating the NADPH oxidase-mediated superoxide production with postimplantation trophoblast physiology. NADPH-oxidase cDNA subunit sequencing showed a high degree of homology between the trophoblast and neutrophil isoforms of the oxidase, emphasizing a putative role for reactive oxygen species production in phagocytic activity and innate immune responses.
Resumo:
Mesenchymal stem cells (MSCs) have received great attention due to their remarkable regenerative, angiogenic, antiapoptotic, and immunosuppressive properties. Although conventionally isolated from the bone marrow, they are known to exist in all tissues and organs, raising the question on whether they are identical cell populations or have important differences at the molecular level. To better understand the relationship between MSCs residing in different tissues, we analyzed the expression of genes related to pluripotency (SOX2 and OCT-4) and to adipogenic (C/EBP and ADIPOR1), osteogenic (OMD and ALP), and chondrogenic (COL10A1 and TRPV4) differentiation in cultures derived from murine endodermal (lung) and mesodermal (adipose) tissue maintained in different conditions. MSCs were isolated from lungs (L-MSCs) and inguinal adipose tissue (A-MSCs) and cultured in normal conditions, in overconfluence or in inductive medium for osteogenic, adipogenic, or chondrogenic differentiation. Cultures were characterized for morphology, immunophenotype, and by quantitative real-time reverse transcription-polymerase chain reaction for expression of pluripotency genes or markers of differentiation. Bone marrow-derived MSCs were also analyzed for comparison of these parameters. L-MSCs and A-MSCs exhibited the typical morphology, immunophenotype, and proliferation and differentiation pattern of MSCs. The analysis of gene expression showed a higher potential of adipose tissue-derived MSCs toward the osteogenic pathway and of lung-derived MSCs to chondrogenic differentiation, representing an important contribution for the definition of the type of cell to be used in clinical trials of cell therapy and tissue engineering.
Resumo:
Lima S.A.F., Wodewotzky T.I., Lima-Neto J.F., Beltrao-Braga P.C.B. & Alvarenga F.C.L. 2012. [In vitro differentiation of mesenchimal stem cells of dogs into osteogenic precursors.] Diferenciacao in vitro de celulas-tronco mesenquimais da medula ossea de caes em precursores osteogenicos. Pesquisa Veterinaria Brasileira 32(5):463-469. Departamento de Reproducao Animal e Radiologia Veterinaria, Faculdade de Medicina Veterinaria e Zootecnia, Universidade Estadual Paulista, Campus de Botucatu, Distrito de Rubiao Junior s/n, Botucatu, SP 18618-970, Brazil. E-mail: silviavet@usp.br The aim of our research was to evaluate the potential for osteogenic differentiation of mesenchimal stem cells (MSC) obtained from dog bone marrow. The MSC were separated using the Ficoll method and cultured under two different conditions: DMEM low glucose or DMEM/F12, both containing L-glutamine, 20% of FBS and antibiotics. MSC markers were tested, confirming CD44+ and CD34- cells with flow cytometry. For osteogenic differentiation, cells were submitted to four different conditions: Group 1, same conditions used for primary cell culture with DMEM supplemented media; Group 2, same conditions of Group 1 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. Group 3, Cells cultured with supplemented DMEM/F12 media, and Group 4, same conditions as in Group 3 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. The cellular differentiation was confirmed using alizarin red and imunostaining with SP7/Osterix antibody. We observed by alizarin staining that calcium deposit was more evident in cells cultivated in DMEM/F12. Furthermore, by SP/7Osterix antibody immunostaining we obtained 1:6 positive cells when using DMEM/F12 compared with 1:12 for low-glucose DMEM. Based on our results, we conclude that the medium DMEM/F12 is more efficient for induction of differentiation of mesenchymal stem cells in canine osteogenic progenitors. This effect is probably due to the greater amount of glucose in the medium and the presence of various amino acids.
Resumo:
Background: The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-beta. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of Sao Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results: We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. Conclusion: We propose that rhBMP-2 has great therapeutic potential in bone marrow cells by serving as a tumor suppressor to increase p53 and the pro-apoptotic proteins Bad and Bax, as well as by increasing the activity of phosphorylated caspase 3. Study design: Canine bone marrow mesenchymal stem cells associated with rhBMP2 in canine osteosarcoma treatment: "in vitro" study
Resumo:
Implant topography is an important factor that influences many cell types. To understand the role of topography in the inflammatory events, we evaluated the response of human gingival fibroblasts (HGFs) by the release pattern of cytokines. HGFs were cultured on Ti discs for 24 and 48 h. Four different surface treatments were used: machining method (turned), blasting followed by an acid-etching method (BAE), oxidative nanopatterning (ON) method, and an association of blasting followed by an acid-etching plus oxidative nanopatterning (BAE+ON) method. Extracellular levels of IL-6, IL-8, transforming growth factor beta (TGF-beta), IL-4, and IL-10 were measured by enzyme-linked immunosorbant assay. Increased levels of IL-6 and IL-8 were observed in all surfaces after 24 h which decreased after 48 h. BAE, ON, and BAE+ON surfaces showed a reduction in IL-6 levels compared with the turned after 48 h (p < 0.05). On one hand, IL-8 production was lower in BAE+ON in comparison to the turned surface (p < 0.05). On the other hand, IL-4 showed increased levels with 48 h, which were significantly different between turned, BAE, and ON surfaces, but not with BAE+ON. Additionally, TGF-beta and IL-10 production were not detected. This study indicates that nanotopography might be important in the modulation of the inflammatory response in cultured HGFs. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:2629-2636, 2012.
Resumo:
The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Key message Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells.