16 resultados para Crop rotation.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using theoretical arguments, a simple scaling law for the size of the intrinsic rotation observed in tokamaks in the absence of a momentum injection is found: The velocity generated in the core of a tokamak must be proportional to the ion temperature difference in the core divided by the plasma current, independent of the size of the device. The constant of proportionality is of the order of 10 km . s(-1) . MA . keV(-1). When the intrinsic rotation profile is hollow, i.e., it is countercurrent in the core of the tokamak and cocurrent in the edge, the scaling law presented in this Letter fits the data remarkably well for several tokamaks of vastly different size and heated by different mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal hip rotation (IHR) is the major cause of intoeing gait in patients with cerebral palsy (CP). Femoral derotation osteotomy (FDO) is the preferred treatment to correct excessive anteversion, however the condition may persist or recur postoperatively. Retrospective clinical and kinematic evaluation of 75 spastic diplegic CP patients was conducted for a mean duration of 22 months following proximal FDO. The patients were divided into two groups depending on the correction or persistence of IHR evident at kinematics after surgery. If corrected, mean patient follow-up was extended to 53 months. Outcomes were analyzed using Two Proportions Equality, Mann-Whitney and Wilcoxon tests. IHR persisted in 33.3% of cases at mean follow-up of 22 months and subtrochanteric femur osteotomy was more frequent in this group (p = 0.033). Thirty-five of the fifty-four patients with first-round gait correction were monitored during the extended follow-up. Those for whom IHR recurred (9.5%) had undergone FDO at a comparatively younger age. Patient gender, operations prior to or at the time of femoral osteotomy, topographic classification, GMFCS level, or the extent of preoperative clinical and kinematic abnormalities had no apparent influence on persistence or recurrence of abnormal gait. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adoption of no-till system (NTS) combined with crop-livestock integration (CLI) has been a strategy promoted in Brazil, aiming to maximize areas yield and increase agribusiness profitability. This study aimed to evaluate grains yield and phytotechnical attributes from maize and soybean culture by CLI system under NTS after winter annual pure and diversified pastures with the absence or presence of grazing animals. The experiment was installed in Castro (Parana State, Brazil) on in a dystrophic Humic Rhodic Hapludox with a clay texture, using experimental design of randomized complete blocks in 4 x 2 factorial scheme with three replications. Treatments included four pasture combinations (diversified or pure) and animal categories (light and heavy) subjected or not to grazing animals during the winter. During 2008/09 and 2009/10 summers, the area was cultivated with soybeans and maize, respectively, with yield assessment of grains and phytotechnical attributes. Treatments did not alter the yield and weight of a thousand seeds (WTS) of soybeans. In maize culture, the grazing animal during the winter increased the plant population and grains yield, but gave slight decrease in WTS. Pasture combinations (diversified or pure) and animal categories (light and heavy) did not interfere in soybean culture, but benefited the maize crop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen management has been intensively studied on several crops and recently associated with variable rate on-the-go application based on crop sensors. Such studies are scarce for sugarcane and as a biofuel crop the energy input matters, seeking high positive energy balance production and low carbon emission on the whole production system. This article presents the procedure and shows the first results obtained using a nitrogen and biomass sensor (N-Sensor (TM) ALS, Yara International ASA) to indicate the nitrogen application demands of commercial sugarcane fields. Eight commercial fields from one sugar mill in the state of Sao Paulo, Brazil, varying from 15 to 25 ha in size, were monitored. Conditions varied from sandy to heavy soils and the previous harvesting occurred in May and October 2009, including first, second, and third ratoon stages. Each field was scanned with the sensor three times during the season (at 0.2, 0.4, and 0.6 m stem height), followed by tissue sampling for biomass and nitrogen uptake at ten spots inside the area, guided by the different values shown by the sensor. The results showed a high correlation between sensor values and sugarcane biomass and nitrogen uptake, thereby supporting the potential use of this technology to develop algorithms to manage variable rate application of nitrogen for sugarcane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that if f is a homeomorphism of the 2-torus isotopic to the identity and its lift (f) over tilde is transitive, or even if it is transitive outside the lift of the elliptic islands, then (0,0) is in the interior of the rotation set of (f) over tilde. This proves a particular case of Boyland's conjecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The herbicides glyphosate and paraquat have been used by Brazilian soybean producers to obtain crop desiccation and to anticipate and uniformity at harvest. However, improper use of herbicides can to occasion problems in agronomic and physiologic characteristics of crop. This study aimed to evaluate the use of the glyphosate and paraquat herbicides as a desiccant for growing soybeans. The experiment was conducted in 2005/06 crop year, in an experimental design of randomized blocks with four replications. Treatments were arranged in two factorial design, 3x3x5x2 and 3x2x5x2: two desiccants (glyphosate and paraquat) and control (without drying), three and two growth stages (R6, R7 and R8) and (R7 and R8) for varieties MSOY 6101 of superprecocious cycle, and MG / BR 46 (Conquista) of precocious cycle, respectively, five sampling times (2, 4, 6, 8 and 10 days after application) and two positions in the plants on the ground assessment (apex and base). Was evaluated for seed Production, mass and water content of 100 seeds. Desiccants tested were effective in reducing the water content of seeds, without affecting productivity and mass of 100 seeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study magneto-optical properties of monolayer graphene by means of quantum field theory methods in the framework of the Dirac model. We reveal a good agreement between the Dirac model and a recent experiment on giant Faraday rotation in cyclotron resonance [23]. We also predict other regimes when the effects are well pronounced. The general dependence of the Faraday rotation and absorption on various parameters of samples is revealed both for suspended and epitaxial graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The aim of the present work was to evaluate the resistance to flexural fatigue of Reciproc R25 nickel-titanium files, 25 mm, used in continuous rotation motion or reciprocation motion, in dynamic assays device. Methods: Thirty-six Reciproc R25 files were divided into 2 groups (n = 18) according to kinematics applied, continuous rotary (group CR) and reciprocation motion (group RM). The files were submitted to dynamic assays device moved by an electric engine with 300 rpm of speed that permitted the reproduction of pecking motion. The files run on a ring's groove of temperate steel, simulating instrumentation of a curved root canal with 400 and 5 mm of curvature radius. The fracture of file was detected by sensor of device, and the time was marked. The data were analyzed statistically by Student's t test, with level of significance of 95%. Results: The instruments moved by reciprocating movement reached significantly higher numbers of cycles before fracture (mean, 1787.78 cycles) when compared with instruments moved by continuous rotary (mean, 816.39 cycles). Conclusions: The results showed that the reciprocation motion improves flexural fatigue resistance in nickel-titanium instrument Reciproc R25 when compared with continuous rotation movement. (J Endod 2012;38:684-687)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims. Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods. We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br gamma line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during similar to 5h/night, corresponding to similar to 60 degrees position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results. By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius R-eq = 11.6 +/- 0.3 R-circle dot, equatorial rotation velocity V-eq = 298 +/- 9 km s(-1), rotation axis inclination angle i = 101.5 +/- 5.2 degrees, and rotation axis position angle (from North to East) PA(rot) = 34.9 +/- 1.6 degrees. From these parameters and the stellar distance, the equatorial angular diameter circle divide(eq) of Achernar is found to be 2.45 +/- 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, circle divide(eq) and PA(rot) measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions. The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to similar to 4 times smaller than the diffraction-limited angular resolution of the interferometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DISTRIBUTION OF NITROGEN AMMONIUM SULFATE (N-15) SOIL-PLANT SYSTEM IN A NO-TILLAGE CROP SUCCESSION The N use by maize (Zea mays, L.) is affected by N-fertilizer levels. This study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of N use by maize in a crop succession, based on N-15-labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signalgrass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of N rates of 60, 120 and 180 kg ha(-1) in the form of labeled N-15 ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated N; fertilizer-derived N in corn plants and pasture; fertilizer-derived N in the soil; and recovery of fertilizer-N by plants and soil were evaluated. The highest uptake of fertilizer N by corn was observed after application of 120 kg ha(-1) N and the residual effect of N fertilizer on subsequent corn and Brachiaria was highest after application of 180 kg ha(-1) N. After the crop succession, soil N recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha(-1) N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background MicroRNAs (miRNAs) are small regulatory RNAs, some of which are conserved in diverse plant genomes. Therefore, computational identification and further experimental validation of miRNAs from non-model organisms is both feasible and instrumental for addressing miRNA-based gene regulation and evolution. Sugarcane (Saccharum spp.) is an important biofuel crop with publicly available expressed sequence tag and genomic survey sequence databases, but little is known about miRNAs and their targets in this highly polyploid species. Results In this study, we have computationally identified 19 distinct sugarcane miRNA precursors, of which several are highly similar with their sorghum homologs at both nucleotide and secondary structure levels. The accumulation pattern of mature miRNAs varies in organs/tissues from the commercial sugarcane hybrid as well as in its corresponding founder species S. officinarum and S. spontaneum. Using sugarcane MIR827 as a query, we found a novel MIR827 precursor in the sorghum genome. Based on our computational tool, a total of 46 potential targets were identified for the 19 sugarcane miRNAs. Several targets for highly conserved miRNAs are transcription factors that play important roles in plant development. Conversely, target genes of lineage-specific miRNAs seem to play roles in diverse physiological processes, such as SsCBP1. SsCBP1 was experimentally confirmed to be a target for the monocot-specific miR528. Our findings support the notion that the regulation of SsCBP1 by miR528 is shared at least within graminaceous monocots, and this miRNA-based post-transcriptional regulation evolved exclusively within the monocots lineage after the divergence from eudicots. Conclusions Using publicly available nucleotide databases, 19 sugarcane miRNA precursors and one new sorghum miRNA precursor were identified and classified into 14 families. Comparative analyses between sugarcane and sorghum suggest that these two species retain homologous miRNAs and targets in their genomes. Such conservation may help to clarify specific aspects of miRNA regulation and evolution in the polyploid sugarcane. Finally, our dataset provides a framework for future studies on sugarcane RNAi-dependent regulatory mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently high spectral resolution sensors have been developed, which allow new and more advanced applications in agriculture. Motivated by the increasing importance of hyperspectral remote sensing data, the need for research is important to define optimal wavebands to estimate biophysical parameters of crop. The use of narrow band vegetation indices (VI) derived from hyperspectral measurements acquired by a field spectrometer was evaluated to estimate bean (Phaseolus vulgaris L.) grain yield, plant height and leaf area index (LAI). Field canopy reflectance measurements were acquired at six bean growth stages over 48 plots with four water levels (179.5; 256.5; 357.5 and 406.2 mm) and tree nitrogen rates (0; 80 and 160 kg ha-1) and four replicates. The following VI was analyzed: OSNBR (optimum simple narrow-band reflectivity); NB_NDVI (narrow-band normalized difference vegetation index) and NDVI (normalized difference index). The vegetation indices investigated (OSNBR, NB_NDVI and NDVI) were efficient to estimate LAI, plant height and grain yield. During all crop development, the best correlations between biophysical variables and spectral variables were observed on V4 (the third trifoliolate leaves were unfolded in 50 % of plants) and R6 (plants developed first flowers in 50 % of plants) stages, according to the variable analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the great importance of soybeans in Brazil, there have been few applications of soybean crop modeling on Brazilian conditions. Thus, the objective of this study was to use modified crop models to estimate the depleted and potential soybean crop yield in Brazil. The climatic variable data used in the modified simulation of the soybean crop models were temperature, insolation and rainfall. The data set was taken from 33 counties (28 Sao Paulo state counties, and 5 counties from other states that neighbor São Paulo). Among the models, modifications in the estimation of the leaf area of the soybean crop, which includes corrections for the temperature, shading, senescence, CO2, and biomass partition were proposed; also, the methods of input for the model's simulation of the climatic variables were reconsidered. The depleted yields were estimated through a water balance, from which the depletion coefficient was estimated. It can be concluded that the adaptation soybean growth crop model might be used to predict the results of the depleted and potential yield of soybeans, and it can also be used to indicate better locations and periods of tillage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication we report results from the application to the study of the rotation of the Moon of the creeping tide theory just proposed (Ferraz-Mello, Cel. Mech. Dyn. Astron., submitted. ArXiv astro-ph 1204.3957). The choice of the Moon for the first application of this new theory is motivated by the fact that the Moon is one of the best observed celestial bodies and the comparison of the theoretical predictions of the theory with observations i may validate the theory or point out the need of further improvements. Particularly, the tidal perturbations of the rotation of the Moon - the physical libration of the Moon - have been detected in the Lunar Laser Ranging measurements (Williams et al. JGR 106, 27933, 2001). The major difficulty in this application comes from the fact that tidal torques in a planet-satellite system are very sensitive to the distance between the two-bodies, which is strongly affected by Solar perturbations. In the case of the Moon, the main solar perturbations - the Evection and the Variation - are more important than most of the Keplerian oscillations, being smaller only than the first Keplerian harmonic (equation of the centre). Besides, two of the three components of the Moon's libration in longitude whose tidal contributions were determined by LLR are related to these perturbations. The results may allow us to determine the main parameter of a possible Moon's creeping tide. The preliminary results point to a relaxation factor (gamma) 2 to 4 times smaller than the one predicted from the often cited values of thr Moon's quality factor Q (between 30 and 40), and points to larger Q values.