11 resultados para Crop livestock
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The adoption of no-till system (NTS) combined with crop-livestock integration (CLI) has been a strategy promoted in Brazil, aiming to maximize areas yield and increase agribusiness profitability. This study aimed to evaluate grains yield and phytotechnical attributes from maize and soybean culture by CLI system under NTS after winter annual pure and diversified pastures with the absence or presence of grazing animals. The experiment was installed in Castro (Parana State, Brazil) on in a dystrophic Humic Rhodic Hapludox with a clay texture, using experimental design of randomized complete blocks in 4 x 2 factorial scheme with three replications. Treatments included four pasture combinations (diversified or pure) and animal categories (light and heavy) subjected or not to grazing animals during the winter. During 2008/09 and 2009/10 summers, the area was cultivated with soybeans and maize, respectively, with yield assessment of grains and phytotechnical attributes. Treatments did not alter the yield and weight of a thousand seeds (WTS) of soybeans. In maize culture, the grazing animal during the winter increased the plant population and grains yield, but gave slight decrease in WTS. Pasture combinations (diversified or pure) and animal categories (light and heavy) did not interfere in soybean culture, but benefited the maize crop.
Resumo:
Physic nut (Jatropha curcas) is a plant cultivated for biofuel production. Pericarp is a potential livestock food source by-product. However, its use may be limited due to the presence of toxic compounds, mainly phorbol esters. Thus, this study aimed to evaluate pericarp toxicity. Twenty sheep were divided in four groups, one control group which did not receive the plant and three experimental groups which received pericarp in 15% (G15), 30% (G30) and 45% (G45) concentrations for 23 days. After 10 days of treatment, pericarp ingestion produced food intake decrease, diarrhea, dehydration and loss of body condition. All treated groups showed decrease in alkaline phosphatase activity. G30 animals presented reductions in urea and total protein concentrations, and increase in potassium and sodium levels. G45 animals showed increase in serum aspartate aminotransferase activity and in albumin, creatinin, total and indirect bilirubin levels. Anatomohistopathologic findings included ascites, hydropericardium, congestion of the gastintestinal tract and lungs, pulmonary edema and adhesions in the thoracic cavity, renal tubular cells and centrilobular cytoplasmic vacuolation and lymphohistiocytic pneumonia and lymphoplasmacytic and histiocytic enteritis. On the physiochemical analysis 0.3845mg of phorbol esters/g of pericarp were detected. It is concluded that J. curcas pericarp is toxic and is not recommended for sheep feeding.
Resumo:
Nitrogen management has been intensively studied on several crops and recently associated with variable rate on-the-go application based on crop sensors. Such studies are scarce for sugarcane and as a biofuel crop the energy input matters, seeking high positive energy balance production and low carbon emission on the whole production system. This article presents the procedure and shows the first results obtained using a nitrogen and biomass sensor (N-Sensor (TM) ALS, Yara International ASA) to indicate the nitrogen application demands of commercial sugarcane fields. Eight commercial fields from one sugar mill in the state of Sao Paulo, Brazil, varying from 15 to 25 ha in size, were monitored. Conditions varied from sandy to heavy soils and the previous harvesting occurred in May and October 2009, including first, second, and third ratoon stages. Each field was scanned with the sensor three times during the season (at 0.2, 0.4, and 0.6 m stem height), followed by tissue sampling for biomass and nitrogen uptake at ten spots inside the area, guided by the different values shown by the sensor. The results showed a high correlation between sensor values and sugarcane biomass and nitrogen uptake, thereby supporting the potential use of this technology to develop algorithms to manage variable rate application of nitrogen for sugarcane.
Resumo:
The herbicides glyphosate and paraquat have been used by Brazilian soybean producers to obtain crop desiccation and to anticipate and uniformity at harvest. However, improper use of herbicides can to occasion problems in agronomic and physiologic characteristics of crop. This study aimed to evaluate the use of the glyphosate and paraquat herbicides as a desiccant for growing soybeans. The experiment was conducted in 2005/06 crop year, in an experimental design of randomized blocks with four replications. Treatments were arranged in two factorial design, 3x3x5x2 and 3x2x5x2: two desiccants (glyphosate and paraquat) and control (without drying), three and two growth stages (R6, R7 and R8) and (R7 and R8) for varieties MSOY 6101 of superprecocious cycle, and MG / BR 46 (Conquista) of precocious cycle, respectively, five sampling times (2, 4, 6, 8 and 10 days after application) and two positions in the plants on the ground assessment (apex and base). Was evaluated for seed Production, mass and water content of 100 seeds. Desiccants tested were effective in reducing the water content of seeds, without affecting productivity and mass of 100 seeds.
Resumo:
DISTRIBUTION OF NITROGEN AMMONIUM SULFATE (N-15) SOIL-PLANT SYSTEM IN A NO-TILLAGE CROP SUCCESSION The N use by maize (Zea mays, L.) is affected by N-fertilizer levels. This study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of N use by maize in a crop succession, based on N-15-labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signalgrass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of N rates of 60, 120 and 180 kg ha(-1) in the form of labeled N-15 ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated N; fertilizer-derived N in corn plants and pasture; fertilizer-derived N in the soil; and recovery of fertilizer-N by plants and soil were evaluated. The highest uptake of fertilizer N by corn was observed after application of 120 kg ha(-1) N and the residual effect of N fertilizer on subsequent corn and Brachiaria was highest after application of 180 kg ha(-1) N. After the crop succession, soil N recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha(-1) N.
Resumo:
Plant secondary metabolites are a group of naturally occurring compound classes biosynthesized by differing biochemical pathways whose plant content and regulation is strongly susceptible to environmental influences and to potential herbal predators. Such abiotic and biotic factors might be specifically induced by means of various mechanisms, which create variation in the accumulation or biogenesis of secondary metabolites. Hence the dynamic aspect of bioactive compound synthesis and accumulation enables plants to communicate and react in order to overcome imminent threats. This contribution aims to review the most important mechanisms of various abiotic and biotic interactions, such as pathogenic microorganisms and herbivory, by which plants respond to exogenous influences, and will also report on time-scale variable influences on secondary metabolite profiles. Transmission of signals in plants commonly occurs by 'semiochemicals', which are comprised of terpenes, phenylpropanoids, benzenoids and other volatile compounds. Due to the important functions of volatile terpenes in communication processes of living organisms, as well as its emission susceptibility relative to exogenous influences, we also present different scenarios of concentration and emission variations. Toxic effects of plants vary depending on the level and type of secondary metabolites. In farming and cattle raising scenarios, the toxicity of plant secondary metabolites and respective concentration shifts may have severe consequences on livestock production and health, culminating in adverse effects on crop yields and/or their human consumers, or have an adverse economic impact. From a wider perspective, herbal medicines, agrochemicals or other natural products are also associated with variability in plant metabolite levels, which can impact the safety and reliable efficacy of these products. We also present typical examples of toxic plants which influence livestock production using Brazilian examples of toxicity of sapogenins and alkaloids on livestock to highlight the problem. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background MicroRNAs (miRNAs) are small regulatory RNAs, some of which are conserved in diverse plant genomes. Therefore, computational identification and further experimental validation of miRNAs from non-model organisms is both feasible and instrumental for addressing miRNA-based gene regulation and evolution. Sugarcane (Saccharum spp.) is an important biofuel crop with publicly available expressed sequence tag and genomic survey sequence databases, but little is known about miRNAs and their targets in this highly polyploid species. Results In this study, we have computationally identified 19 distinct sugarcane miRNA precursors, of which several are highly similar with their sorghum homologs at both nucleotide and secondary structure levels. The accumulation pattern of mature miRNAs varies in organs/tissues from the commercial sugarcane hybrid as well as in its corresponding founder species S. officinarum and S. spontaneum. Using sugarcane MIR827 as a query, we found a novel MIR827 precursor in the sorghum genome. Based on our computational tool, a total of 46 potential targets were identified for the 19 sugarcane miRNAs. Several targets for highly conserved miRNAs are transcription factors that play important roles in plant development. Conversely, target genes of lineage-specific miRNAs seem to play roles in diverse physiological processes, such as SsCBP1. SsCBP1 was experimentally confirmed to be a target for the monocot-specific miR528. Our findings support the notion that the regulation of SsCBP1 by miR528 is shared at least within graminaceous monocots, and this miRNA-based post-transcriptional regulation evolved exclusively within the monocots lineage after the divergence from eudicots. Conclusions Using publicly available nucleotide databases, 19 sugarcane miRNA precursors and one new sorghum miRNA precursor were identified and classified into 14 families. Comparative analyses between sugarcane and sorghum suggest that these two species retain homologous miRNAs and targets in their genomes. Such conservation may help to clarify specific aspects of miRNA regulation and evolution in the polyploid sugarcane. Finally, our dataset provides a framework for future studies on sugarcane RNAi-dependent regulatory mechanisms.
Resumo:
Background Limited or no epidemiological information has been reported for rabies viruses (RABVs) isolated from livestock in the northeastern Brazilian states of Paraíba (PB) and Pernambuco (PE). The aim of this study was to clarify the molecular epidemiology of RABVs circulating in livestock, especially cattle, in these areas between 2003 and 2009. Findings Phylogenetic analysis based on 890 nt of the nucleoprotein (N) gene revealed that the 52 livestock-derived RABV isolates characterized here belonged to a single lineage. These isolates clustered with a vampire bat-related RABV lineage previously identified in other states in Brazil; within PB and PE, this lineage was divided between the previously characterized main lineage and a novel sub-lineage. Conclusions The occurrences of livestock rabies in PB and PE originated from vampire bat RABVs, and the causative RABV lineage has been circulating in this area of northeastern Brazil for at least 7 years. This distribution pattern may correlate to that of a vampire bat population isolated by geographic barriers.
Resumo:
Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.
Resumo:
Recently high spectral resolution sensors have been developed, which allow new and more advanced applications in agriculture. Motivated by the increasing importance of hyperspectral remote sensing data, the need for research is important to define optimal wavebands to estimate biophysical parameters of crop. The use of narrow band vegetation indices (VI) derived from hyperspectral measurements acquired by a field spectrometer was evaluated to estimate bean (Phaseolus vulgaris L.) grain yield, plant height and leaf area index (LAI). Field canopy reflectance measurements were acquired at six bean growth stages over 48 plots with four water levels (179.5; 256.5; 357.5 and 406.2 mm) and tree nitrogen rates (0; 80 and 160 kg ha-1) and four replicates. The following VI was analyzed: OSNBR (optimum simple narrow-band reflectivity); NB_NDVI (narrow-band normalized difference vegetation index) and NDVI (normalized difference index). The vegetation indices investigated (OSNBR, NB_NDVI and NDVI) were efficient to estimate LAI, plant height and grain yield. During all crop development, the best correlations between biophysical variables and spectral variables were observed on V4 (the third trifoliolate leaves were unfolded in 50 % of plants) and R6 (plants developed first flowers in 50 % of plants) stages, according to the variable analyzed.
Resumo:
Despite the great importance of soybeans in Brazil, there have been few applications of soybean crop modeling on Brazilian conditions. Thus, the objective of this study was to use modified crop models to estimate the depleted and potential soybean crop yield in Brazil. The climatic variable data used in the modified simulation of the soybean crop models were temperature, insolation and rainfall. The data set was taken from 33 counties (28 Sao Paulo state counties, and 5 counties from other states that neighbor São Paulo). Among the models, modifications in the estimation of the leaf area of the soybean crop, which includes corrections for the temperature, shading, senescence, CO2, and biomass partition were proposed; also, the methods of input for the model's simulation of the climatic variables were reconsidered. The depleted yields were estimated through a water balance, from which the depletion coefficient was estimated. It can be concluded that the adaptation soybean growth crop model might be used to predict the results of the depleted and potential yield of soybeans, and it can also be used to indicate better locations and periods of tillage.