12 resultados para Crop evapotranspiration

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Citrus Variegated Chlorosis (CVC) is currently present in approximately 40% of citrus plants in Brazil and causes an annual loss of around 120 million US dollars to the Brazilian citrus industry. Despite the fact that CVC has been present in Brazil for over 20 years, a relationship between disease intensity and yield loss has not been established. In order to achieve this, an experiment was carried out in a randomized block design in a 3 x 2 factorial scheme with 10-year-old Natal sweet orange. The following treatments were applied: irrigation with 0, 50 or 100% of the evapotranspiration of the crop, combined with natural infection or artificial inoculation with Xylella fastidiosa, the causal agent of CVC. The experiment was evaluated during three seasons. A negative exponential model was fitted to the relationships between yield versus CVC severity and yield versus Area Under Disease Progress Curve (AUDPC). In addition, the relationship between yield versus CVC severity and canopy volume was fitted by a multivariate exponential model. The use of the AUDPC variable showed practical limitations when compared with the variable CVC severity. The parameter values in the relationship of yieldCVC severity were similar for all treatments unlike in the multivariate model. Consequently, the yieldCVC intensity relationship (with 432 data points) could be described by one single model: y = 114.07 exp(-0.017 x), where y is yield (symptomless fruit weight in kg) and x is disease severity (R2 = 0.45; P < 0.01).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of evapotranspiration on a local scale is important information for agricultural and hydrological practices. However, equations to estimate potential evapotranspiration based only on temperature data, which are simple to use, are usually less trustworthy than the Food and Agriculture Organization (FAO)Penman-Monteith standard method. The present work describes two correction procedures for potential evapotranspiration estimates by temperature, making the results more reliable. Initially, the standard FAO-Penman-Monteith method was evaluated with a complete climatologic data set for the period between 2002 and 2006. Then temperature-based estimates by Camargo and Jensen-Haise methods have been adjusted by error autocorrelation evaluated in biweekly and monthly periods. In a second adjustment, simple linear regression was applied. The adjusted equations have been validated with climatic data available for the Year 2001. Both proposed methodologies showed good agreement with the standard method indicating that the methodology can be used for local potential evapotranspiration estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen management has been intensively studied on several crops and recently associated with variable rate on-the-go application based on crop sensors. Such studies are scarce for sugarcane and as a biofuel crop the energy input matters, seeking high positive energy balance production and low carbon emission on the whole production system. This article presents the procedure and shows the first results obtained using a nitrogen and biomass sensor (N-Sensor (TM) ALS, Yara International ASA) to indicate the nitrogen application demands of commercial sugarcane fields. Eight commercial fields from one sugar mill in the state of Sao Paulo, Brazil, varying from 15 to 25 ha in size, were monitored. Conditions varied from sandy to heavy soils and the previous harvesting occurred in May and October 2009, including first, second, and third ratoon stages. Each field was scanned with the sensor three times during the season (at 0.2, 0.4, and 0.6 m stem height), followed by tissue sampling for biomass and nitrogen uptake at ten spots inside the area, guided by the different values shown by the sensor. The results showed a high correlation between sensor values and sugarcane biomass and nitrogen uptake, thereby supporting the potential use of this technology to develop algorithms to manage variable rate application of nitrogen for sugarcane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The herbicides glyphosate and paraquat have been used by Brazilian soybean producers to obtain crop desiccation and to anticipate and uniformity at harvest. However, improper use of herbicides can to occasion problems in agronomic and physiologic characteristics of crop. This study aimed to evaluate the use of the glyphosate and paraquat herbicides as a desiccant for growing soybeans. The experiment was conducted in 2005/06 crop year, in an experimental design of randomized blocks with four replications. Treatments were arranged in two factorial design, 3x3x5x2 and 3x2x5x2: two desiccants (glyphosate and paraquat) and control (without drying), three and two growth stages (R6, R7 and R8) and (R7 and R8) for varieties MSOY 6101 of superprecocious cycle, and MG / BR 46 (Conquista) of precocious cycle, respectively, five sampling times (2, 4, 6, 8 and 10 days after application) and two positions in the plants on the ground assessment (apex and base). Was evaluated for seed Production, mass and water content of 100 seeds. Desiccants tested were effective in reducing the water content of seeds, without affecting productivity and mass of 100 seeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evapotranspiration (ET) plays an important role in global climate dynamics and in primary production of terrestrial ecosystems; it represents the mass and energy transfer from the land to atmosphere. Limitations to measuring ET at large scales using ground-based methods have motivated the development of satellite remote sensing techniques. The purpose of this work is to evaluate the accuracy of the SEBAL algorithm for estimating surface turbulent heat fluxes at regional scale, using 28 images from MODIS. SEBAL estimates are compared with eddy-covariance (EC) measurements and results from the hydrological model MGB-IPH. SEBAL instantaneous estimates of latent heat flux (LE) yielded r(2) = 0.64 and r(2) = 0.62 over sugarcane croplands and savannas when compared against in situ EC estimates. At the same sites, daily aggregated estimates of LE were r(2) = 0.76 and r(2) = 0.66, respectively. Energy balance closure showed that turbulent fluxes over sugarcane croplands were underestimated by 7% and 9% over savannas. Average daily ET from SEBAL is in close agreement with estimates from the hydrological model for an overlay of 38,100 km(2) (r(2) = 0.88). Inputs to which the algorithm is most sensitive are vegetation index (NDVI), gradient of temperature (dT) to compute sensible heat flux (H) and net radiation (Re). It was verified that SEBAL has a tendency to overestimate results both at local and regional scales probably because of low sensitivity to soil moisture and water stress. Nevertheless the results confirm the potential of the SEBAL algorithm, when used with MODIS images for estimating instantaneous LE and daily ET from large areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the yield, components of production and oil content of two castor bean cultivars through drip irrigation with different water depths. The research was conducted in 2009 in an Oxisol clay in the experimental field in Dourados, Mato Grosso do Sul State. The experimental design was randomized blocks in factorial scheme with five water depths (0, 25, 50, 100 and 150% of evapotranspiration for drip irrigation) in two castor bean cultivars (IAC 2028 and IAC 80) with four replications. The irrigation schedule was predetermined up to two irrigations per week except on rainy days. The increase of irrigation provided significant increase in most components of production and crop yield without changing the oil content of seeds. The application of higher water depth increased yield by 80% in relation to the treatment that received no supplemental irrigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimation of reference evapotranspiration (ETo), used in water balance, allows to determine soil water content, assisting on irrigation management. The present study aimed to compare simple ETo estimating methods with the Penman-Monteith (FAO), in the folowing time scales: daily, 5, 10, 15 and 30 days and monthly in the counties of Frederico Westphalen and Palmeira das Missoes, in the Rio Grande do Sul state, Brazil. The methods tested had their efficiency improved by increasing the time scale of analysis, keeping the same performance for both locations. The highest and lowest ETo values occurred in December and June, respectively. Most methods underestimated ETo. For any of the time scales Makking and Radiaton FAO24 methods can replace the Penman-Monteith for estimating ETo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DISTRIBUTION OF NITROGEN AMMONIUM SULFATE (N-15) SOIL-PLANT SYSTEM IN A NO-TILLAGE CROP SUCCESSION The N use by maize (Zea mays, L.) is affected by N-fertilizer levels. This study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of N use by maize in a crop succession, based on N-15-labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signalgrass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of N rates of 60, 120 and 180 kg ha(-1) in the form of labeled N-15 ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated N; fertilizer-derived N in corn plants and pasture; fertilizer-derived N in the soil; and recovery of fertilizer-N by plants and soil were evaluated. The highest uptake of fertilizer N by corn was observed after application of 120 kg ha(-1) N and the residual effect of N fertilizer on subsequent corn and Brachiaria was highest after application of 180 kg ha(-1) N. After the crop succession, soil N recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha(-1) N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background MicroRNAs (miRNAs) are small regulatory RNAs, some of which are conserved in diverse plant genomes. Therefore, computational identification and further experimental validation of miRNAs from non-model organisms is both feasible and instrumental for addressing miRNA-based gene regulation and evolution. Sugarcane (Saccharum spp.) is an important biofuel crop with publicly available expressed sequence tag and genomic survey sequence databases, but little is known about miRNAs and their targets in this highly polyploid species. Results In this study, we have computationally identified 19 distinct sugarcane miRNA precursors, of which several are highly similar with their sorghum homologs at both nucleotide and secondary structure levels. The accumulation pattern of mature miRNAs varies in organs/tissues from the commercial sugarcane hybrid as well as in its corresponding founder species S. officinarum and S. spontaneum. Using sugarcane MIR827 as a query, we found a novel MIR827 precursor in the sorghum genome. Based on our computational tool, a total of 46 potential targets were identified for the 19 sugarcane miRNAs. Several targets for highly conserved miRNAs are transcription factors that play important roles in plant development. Conversely, target genes of lineage-specific miRNAs seem to play roles in diverse physiological processes, such as SsCBP1. SsCBP1 was experimentally confirmed to be a target for the monocot-specific miR528. Our findings support the notion that the regulation of SsCBP1 by miR528 is shared at least within graminaceous monocots, and this miRNA-based post-transcriptional regulation evolved exclusively within the monocots lineage after the divergence from eudicots. Conclusions Using publicly available nucleotide databases, 19 sugarcane miRNA precursors and one new sorghum miRNA precursor were identified and classified into 14 families. Comparative analyses between sugarcane and sorghum suggest that these two species retain homologous miRNAs and targets in their genomes. Such conservation may help to clarify specific aspects of miRNA regulation and evolution in the polyploid sugarcane. Finally, our dataset provides a framework for future studies on sugarcane RNAi-dependent regulatory mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently high spectral resolution sensors have been developed, which allow new and more advanced applications in agriculture. Motivated by the increasing importance of hyperspectral remote sensing data, the need for research is important to define optimal wavebands to estimate biophysical parameters of crop. The use of narrow band vegetation indices (VI) derived from hyperspectral measurements acquired by a field spectrometer was evaluated to estimate bean (Phaseolus vulgaris L.) grain yield, plant height and leaf area index (LAI). Field canopy reflectance measurements were acquired at six bean growth stages over 48 plots with four water levels (179.5; 256.5; 357.5 and 406.2 mm) and tree nitrogen rates (0; 80 and 160 kg ha-1) and four replicates. The following VI was analyzed: OSNBR (optimum simple narrow-band reflectivity); NB_NDVI (narrow-band normalized difference vegetation index) and NDVI (normalized difference index). The vegetation indices investigated (OSNBR, NB_NDVI and NDVI) were efficient to estimate LAI, plant height and grain yield. During all crop development, the best correlations between biophysical variables and spectral variables were observed on V4 (the third trifoliolate leaves were unfolded in 50 % of plants) and R6 (plants developed first flowers in 50 % of plants) stages, according to the variable analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the great importance of soybeans in Brazil, there have been few applications of soybean crop modeling on Brazilian conditions. Thus, the objective of this study was to use modified crop models to estimate the depleted and potential soybean crop yield in Brazil. The climatic variable data used in the modified simulation of the soybean crop models were temperature, insolation and rainfall. The data set was taken from 33 counties (28 Sao Paulo state counties, and 5 counties from other states that neighbor São Paulo). Among the models, modifications in the estimation of the leaf area of the soybean crop, which includes corrections for the temperature, shading, senescence, CO2, and biomass partition were proposed; also, the methods of input for the model's simulation of the climatic variables were reconsidered. The depleted yields were estimated through a water balance, from which the depletion coefficient was estimated. It can be concluded that the adaptation soybean growth crop model might be used to predict the results of the depleted and potential yield of soybeans, and it can also be used to indicate better locations and periods of tillage.