4 resultados para Creative displacement
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
PURPOSE. To study changes in lamina cribrosa position and prelaminar tissue thickness (PTT) after surgical IOP reduction in glaucoma patients. METHODS. Twenty-two patients (mean age, 71.4 years) were imaged with spectral domain optical coherence tomography (SD-OCT; 24 radial B-scans centered on the optic nerve head [ONH]) before trabeculectomy or tube shunt implantation. Follow up images were acquired 1 week, 1 month, 3 months, and 6 months postsurgery. Bruch's membrane opening (BMO), the internal limiting membrane (ILM) and the anterior laminar surface (ALS) were segmented in each radial scan with custom software. Surfaces were fitted to the ILM and ALS with the extracted three-dimesional coordinates. PTT was the distance between the ILM and ALS, perpendicular to a BMO reference plane. Serial postsurgical laminar displacement (LD), relative to the BMO reference plane, and changes in PTT were measured. Positive values indicated anterior LD. RESULTS. Mean (SD) presurgery IOP was 18.1 (6.5) mm Hg, and reduced by 4.7 (5.5), 2.4 (7.7), 7.0 (6.2), and 6.8 (7.5) mm Hg at 1 week, 1 month, 3 months, and 6 months postsurgery, respectively. At the four postsurgery time points, there was significant anterior LD (1.8 [9.5], -1.1 [8.9], 8.8 [20.2], and 17.9 [25.8] mu m) and PTT increase (1.7 [13.3], 2.4 [11.9], 17.4 [13.7], and 13.9 [18.6] mu m). LD was greater in ONHs with larger BMO area (P = 0.01) and deeper ALS (P = 0.04); however, PTT was not associated with any of the tested independent variables. CONCLUSIONS. Both anterior LD and thickening of prelaminar tissue occur after surgical IOP reduction in patients with glaucoma. (Invest Ophthalmol Vis Sci. 2012;53:5819-5826) DOI:10.1167/iovs.12-9924
Resumo:
Field experiments have demonstrated that piles driven into sand can respond to axial cyclic loading in Stable, Unstable or Meta-Stable ways, depending on the combinations of mean and cyclic loads and the number of cycles. An understanding of the three styles of responses is provided by experiments involving a highly instrumented model displacement pile and an array of soil stress sensors installed in fine sand in a pressurised calibration chamber. The different patterns of effective stress developing on and around the shaft are reported, along with the results of static load tests that track the effects on shaft capacity. The interpretation links these observations to the sand's stress strain behaviour. The interface-shear characteristics, the kinematic yielding, the local densification, the growth of a fractured interface-shear zone and the restrained dilatancy at the pile soil interface are all found to be important. The model tests are shown to be compatible with the full-scale behaviour and to provide key information for improving the modelling and the design rules. (C) 2012 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
Resumo:
Background: High-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the redominant mechanisms. Methods: Six subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation. Results: Plantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half. Conclusion: The present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training.