31 resultados para Coupling scheme
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A new methodology for the synthesis of tunable patch filters is presented. The methodology helps the designer to perform a theoretical analysis of the filter through a coupling matrix that includes the effect of the tuning elements used to tune the filter. This general methodology accounts for any tuning parameter desired and was applied to the design of a tunable dual-mode patch filter with independent control of center frequency and bandwidth (BW). The bandpass filter uses a single triangular resonator with two etched slots that split the fundamental degenerate modes and form the filter passband. Varactor diodes assembled across the slots are used to vary the frequency of each degenerate fundamental mode independently, which is feasible due to the nature of the coupling scheme of the filter. The varactor diode model used in simulations, their assembling, the dc bias configuration, and measured results are presented. The theory results are compared to the simulations and to measurements showing a very good agreement and validating the proposed methodology. The fabricated filter presents an elliptic response with 20% of center frequency tuning range around 3.2 GHz and a fractional BW variation from 4% to 12% with low insertion loss and high power handling with a 1-dB compression point higher than +14.5 dB.
Resumo:
This paper addresses the numerical solution of random crack propagation problems using the coupling boundary element method (BEM) and reliability algorithms. Crack propagation phenomenon is efficiently modelled using BEM, due to its mesh reduction features. The BEM model is based on the dual BEM formulation, in which singular and hyper-singular integral equations are adopted to construct the system of algebraic equations. Two reliability algorithms are coupled with BEM model. The first is the well known response surface method, in which local, adaptive polynomial approximations of the mechanical response are constructed in search of the design point. Different experiment designs and adaptive schemes are considered. The alternative approach direct coupling, in which the limit state function remains implicit and its gradients are calculated directly from the numerical mechanical response, is also considered. The performance of both coupling methods is compared in application to some crack propagation problems. The investigation shows that direct coupling scheme converged for all problems studied, irrespective of the problem nonlinearity. The computational cost of direct coupling has shown to be a fraction of the cost of response surface solutions, regardless of experiment design or adaptive scheme considered. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the effects of quenched disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong-disorder renormalization group, we demonstrate that quenched disorder rounds the first-order quantum phase transition to a continuous one for both weak and strong coupling between the colors. In the strong-coupling case, we find a distinct type of infinite-randomness critical point characterized by additional internal degrees of freedom. We investigate its critical properties in detail and find stronger thermodynamic singularities than in the random transverse field Ising chain. We also discuss the implications for higher spatial dimensions as well as unusual aspects of our renormalization-group scheme. DOI: 10.1103/PhysRevB.86.214204
Resumo:
This paper deals with the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees, and a time delay is included in the system. This assumption allows enhancing the explosive transition to reach a synchronous state. We provide an analytical treatment developed in a star graph, which reproduces results obtained in scale-free networks. Our findings have important implications in understanding the synchronization of complex networks since the time delay is present in most real-world complex systems due to the finite speed of the signal transmission over a distance.
Resumo:
We propose a new CPT-even and Lorentz-violating nonminimal coupling between fermions and Abelian gauge fields involving the CPT-even tensor (K-F)(mu nu alpha beta) of the standard model extension. We thus investigate its effects on the cross section of the electron-positron scattering by analyzing the process e(+) + e(-) -> mu(+) + mu(-). Such a study was performed for the parity-odd and parity-even nonbirefringent components of the Lorentz-violating (K-F)(mu nu alpha beta) tensor. Finally, by using experimental data available in the literature, we have imposed upper bounds as tight as 10(-12) (eV)(-1) on the magnitude of the CPT-even and Lorentz-violating parameters while nonminimally coupled. DOI: 10.1103/PhysRevD.86.125033
Resumo:
The study proposes a constrained least square (CLS) pre-distortion scheme for multiple-input single-output (MISO) multiple access ultra-wideband (UWB) systems. In such a scheme, a simple objective function is defined, which can be efficiently solved by a gradient-based algorithm. For the performance evaluation, scenarios CM1 and CM3 of the IEEE 802.15.3a channel model are considered. Results show that the CLS algorithm has a fast convergence and a good trade-off between intersymbol interference (ISI) and multiple access interference (MAI) reduction and signal-to-noise ratio (SNR) preservation, performing better than time-reversal (TR) pre-distortion.
Resumo:
We study the isotropization of a homogeneous, strongly coupled, non-Abelian plasma by means of its gravity dual. We compare the time evolution of a large number of initially anisotropic states as determined, on the one hand, by the full nonlinear Einstein's equations and, on the other, by the Einstein's equations linearized around the final equilibrium state. The linear approximation works remarkably well even for states that exhibit large anisotropies. For example, it predicts with a 20% accuracy the isotropization time, which is of the order of t(iso) less than or similar to 1/T, with T the final equilibrium temperature. We comment on possible extensions to less symmetric situations.
Resumo:
We consider a superfluid cloud composed of a Bose-Einstein condensate oscillating within a magnetic trap (dipole mode) where, due to the existence of a Feshbach resonance, an effective periodic time-dependent modulation in the scattering length is introduced. Under this condition, collective excitations such as the quadrupole mode can take place. We approach this problem by employing both the Gaussian and the Thomas-Fermi variational Ansatze. The resulting dynamic equations are analyzed by considering both linear approximations and numerical solutions, where we observe coupling between dipole and quadrupole modes. Aspects of this coupling related to the variation of the dipole oscillation amplitude are analyzed. This may be a relevant effect in situations where oscillation in a magnetic field in the presence of a bias field B takes place, and should be considered in the interpretation of experimental results.
Resumo:
In this paper, we report on luminescence and absorbance effects of Er+3:Au-doped tellurite glasses synthesized by a melting-quenching and heat treatment technique. After annealing times of 2.5, 5.0, 7.5, and 10.0 h, at 300 A degrees C, the gold nanoparticles (GNP) effects on the Er+3 are verified from luminescence spectra and the corresponding levels lifetime. The localized surface plasmon resonance around 800 nm produced a maximum fluorescence enhancement for the band ranging from 800 to 840 nm, corresponding to the transitions H-4(11/2) -> aEuro parts per thousand I-4(13/2) (805 nm) and S-4(3/2) -> aEuro parts per thousand I-4(13/2) (840 nm), with annealing time till 7.5 h. The measured lifetime of the levels H-4(11/2) and S-4(3/2) confirmed the lifetime reduction due to the energy transfer from the GNP to Er+3, causing an enhanced photon emission rate in these levels.
Resumo:
A general method for the synthesis of triazoles containing selenium and tellurium was accomplished via a CuCAAC reaction between organic azides and a terminal triple bond, generated by in situ deprotection of the silyl group. The reaction tolerates alkyl and arylazides, with alkyl and aryl substituents directly bonded to the chalcogen atom. The products were readily functionalized by a nickel-catalyzed Negishi cross-coupling reaction, furnishing the aryl-heteroaryl products at the 4-position in good yields. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The electromagnetic interference between electronic systems or between their components influences the overall performance. It is important thus to model these interferences in order to optimize the position of the components of an electronic system. In this paper, a methodology to construct the equivalent model of magnetic field sources is proposed. It is based on the multipole expansion, and it represents the radiated emission of generic structures in a spherical reference frame. Experimental results for different kinds of sources are presented illustrating our method.
Resumo:
Correlations between GABA(A) receptor (GABA(A)-R) activity and molecular organization of synaptosomal membranes (SM) were studied along the protocol for cholesterol (Cho) extraction with beta-cyclodextrin (beta-CD). The mere pre-incubation (PI) at 37A degrees C accompanying the beta-CD treatment was an underlying source of perturbations increasing [H-3]-FNZ maximal binding (70%) and K (d) (38%), plus a stiffening of SMs' hydrocarbon core region. The latter was inferred from an increased compressibility modulus (K) of SM-derived Langmuir films, a blue-shifted DPH fluorescence emission spectrum and the hysteresis in DPH fluorescence anisotropy (A (DPH)) in SMs submitted to a heating-cooling cycle (4-37-4A degrees C) with A (DPH,heating) < A (DPH,cooling). Compared with PI samples, the beta-CD treatment reduced B (max) by 5% which correlated with a 45%-decrement in the relative Cho content of SM, a decrease in K and in the order parameter in the EPR spectrum of a lipid spin probe labeled at C5 (5-SASL), and significantly increased A (TMA-DPH). PI, but not beta-CD treatment, could affect the binding affinity. EPR spectra of 5-SASL complexes with beta-CD-, SM-partitioned, and free in solution showed that, contrary to what is usually assumed, beta-CD is not completely eliminated from the system through centrifugation washings. It was concluded that beta-CD treatment involves effects of at least three different types of events affecting membrane organization: (a) effect of PI on membrane annealing, (b) effect of residual beta-CD on SM organization, and (c) Cho depletion. Consequently, molecular stiffness increases within the membrane core and decreases near the polar head groups, leading to a net increase in GABA(A)-R density, relative to untreated samples.
Resumo:
We report a systematic study of the localized surface plasmon resonance effects on the photoluminescence of Er3+-doped tellurite glasses containing Silver or Gold nanoparticles. The Silver and Gold nanoparticles are obtained by means of reduction of Ag ions (Ag+ -> Ag-0) or Au ions (Au3+ -> Au-0) during the melting process followed by the formation of nanoparticles by heat treatment of the glasses. Absorption and photoluminescence spectra reveal particular features of the interaction between the metallic nanoparticles and Er3+ ions. The photoluminescence enhancement observed is due to dipole coupling of Silver nanoparticles with the I-4(13/2) -> I-4(15/2) Er3+ transition and Gold nanoparticles with the H-2(11/2)-> I-4(13/2) (805 nm) and S-4(3/2) -> I-4(13/2) (840 nm) Er3+ transitions. Such process is achieved via an efficient coupling yielding an energy transfer from the nanoparticles to the Er3+ ions, which is confirmed from the theoretical spectra calculated through the decay rate. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
The neutron-rich lead isotopes, up to Pb-216, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond Pb-208.
Resumo:
Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values. (C) 2011 Elsevier By. All rights reserved.