3 resultados para Cotesia Rubecula
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A major issue for mass rearing of insects concerns sanitary conditions and disease. Microsporidian infection (Nosema sp.) in laboratory colonies of Diatraea saccharalis (Fabr.) (Lepidoptera: Crambidae), used in producing the parasitoid. Cotesia flavipes Cameron (Hymenoptera: Braconidae), is representative of the problems faced by growers and industry. Although C. flavipes has been produced for several years in Brazil for biological control of D. saccharalis, we have only recently observed that the parasitoid becomes infected when developing inside hosts infected with Nosema sp. We assessed the effects of Nosema sp. on C. flavipes, including the ability to locate and select hosts, and evaluated pathogen transmission. Third instar larvae of D. saccharalis were inoculated with Nosema sp. spores at different concentrations and were parasitized when larvae reached fifth instar. Heavily infected D. saccharalis larvae did not support parasitism. Parasitoids that developed in infected D. saccharalis larvae exhibited increased duration of larval and pupal stages, decreased adult longevity and number of offspring, and reduced tibia size compared to parasitoids developing in uninfected D. saccharalis larvae. Infection by Nosema sp. reduced the ability of the C. flavipes parasitoid to distinguish between volatiles released by the sugarcane infested by healthy larvae and pure air. Uninfected parasitoids preferred plants infested with uninfected hosts. But infected C. flavipes did not differentiate between uninfected hosts and those infected with Nosema sp. The pathogen is transmitted from host to parasitoids and parasitoids to hosts. Pathogenic effects of the microsporidium in C. flavipes are sufficiently severe to justify disease management efforts, particularly considering the importance of C. flavipes as a biological control agent in sugarcane. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In response to herbivore attack, plants release herbivore-induced plant volatiles (HIPVs) that represent important chemical cues for herbivore natural enemies. Additionally, HIPVs have been shown to mediate other ecological interactions with herbivores. Differently from natural enemies that are generally attracted to HIPVs, herbivores can be either attracted or repelled depending on several biological and ecological parameters. Our study aimed to assess the olfactory response of fall armyworm-mated female moths toward odors released by mechanically and herbivore-induced corn at different time intervals. Results showed that female moths strongly respond to corn volatiles, although fresh damaged corn odors (0-1 h) are not recognized by moths. Moreover, females preferred volatiles released by undamaged plant over herbivore-induced plants at 5-6 h. This preference for undamaged plants may reflect an adaptive strategy of moths to avoid competitors and natural enemies for their offspring. We discussed our results based on knowledge about corn volatile release pattern and raise possible explanations for fall armyworm moth behavior.
Resumo:
Herbivore-attacked plants produce specific volatile substances that represent important cues for host finding by natural enemies. The fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a voracious herbivore and usually feed on maize in all periods of the day. Given that plant needs light to synthesize de novo herbivore-induced volatiles, volatile blend may be changed depending on time of the day the plant is induced, what could interfere in natural enemy foraging. In this sense, the current study aimed to investigate differential attractiveness of maize elicited by fall armyworm regurgitant under light and dark conditions to its specialist larval parasitoid Campoletis flavicincta (Ashmead) (Hymenoptera: Ichneumonidae). All bioassays were conducted in Y-tube olfactometer to assess parasitoid response to odors from undamaged maize, mechanical damage, and regurgitant-treated plants at 0-1, 5-6, and 24-25 h after induction. The results showed that na < ve wasps were attracted to volatiles emitted by nocturnal regurgitant-treated maize at 5-6 h, but not to odors from diurnal regurgitant-treated plants. The differential attractiveness is likely due to blend composition as nocturnal regurgitant-treated plants emit aromatic compounds and the homoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene in larger amounts than diurnal-treated plants.