28 resultados para Corn Starch
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Thermoplastic starch (TPS) from industrial non-modified corn starch was obtained and reinforced with natural strands. The influence of the reinforcement on physical-chemical properties of the composites obtained by melt processing has been analyzed. For this purpose, composites reinforced with different amounts of either sisal or hemp strands have been prepared and evaluated in terms of crystallinity, water sorption, thermal and mechanical properties. The results showed that the incorporation of sisal or hemp strands caused an increase in the glass transition temperature (T-g) of the TPS as determined by DMTA. The reinforcement also increased the stiffness of the material, as reflected in both the storage modulus and the Young's modulus. Intrinsic mechanical properties of the reinforcing fibers showed a lower effect on the final mechanical properties of the materials than their homogeneity and distribution within the matrix. Additionally, the addition of a natural latex plasticizer to the composite decreased the water absorption kinetics without affecting significantly the thermal and mechanical properties of the material. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Although the biopolymer poly-(3-hydroxybutyrate), P[3HB], presents physicochemical properties that make it an alternative material to conventional plastics, its biotechnological production is quite expensive. As carbon substrates contribute greatly to P[3HB] production cost, the utilization of a cheaper carbon substrate and less demanding micro-organisms should decrease its cost. In the present study a 23 factorial experimental design was applied, aiming to evaluate the effects of using hydrolysed corn starch (HCS) and soybean oil (SBO) as carbon substrates, and cheese whey (CW) supplementation in the mineral medium (MM) on the responses, cell dried weigh (DCW), percentage P[3HB] and mass P[3HB] by recombinant Escherichia coli strains JM101 and DH10B, containing the P[3HB] synthase genes from Cupriavidus necator (ex-Ralstonia eutropha). The analysis of effects indicated that the substrates and the supplement and their interactions had positive effect on CDW. Statistically generated equations showed that, at the highest concentrations of HCS, SO and CW, theoretically it should be possible to produce about 2 g L(1) DCW, accumulating 50% P[3HB], in both strains. To complement this study, the strain that presented the best results was cultivated in MM added to HCS, SBO and CW ( in best composition observed) and complex medium (CM) to compare the obtained P[3HB] in terms of physicochemical parameters. The obtained results showed that the P[3HB] production in MM (1.29 g L(-1)) was approximately 20% lower than in CM (1.63 g L(-1)); however, this difference can be compensated by the lower cost of the MM achieved by the use of cheap renewable carbon sources. Moreover, using differential scanning calorimetry and thermogravimetry analyses, it was observed that the polymer produced in MM was the one which presented physicochemical properties (Tg and Tf) that were more similar to those found in the literature for P[3HB].
Resumo:
The objective of this study was to evaluate the requirement of digestible tryptophan for white laying hens in the production stage fed diets of different digestible tryptophan: digestible lysine ratios, as well as animal performance and histological alterations in their reproductive and digestive systems. A total of 280 white laying hens at 29 weeks of age were distributed in a completely randomized design with five treatments and seven replications with eight birds in each. The treatments consisted of a base feed, formulated with corn, soybean meal and corn gluten meal, and supplemented with the synthetic amino acids L-lysine, DL-methionine, L-threonine, L-isoleucine, L-arginine, and L-valine, so as to meet the nutritional requirements for laying hens, except for digestible tryptophan. The basal diet was supplemented with 0.00; 0.017; 0.035; 0.052; and 0.069 g/kg of L-tryptophan in substitution for corn starch with the objective of reaching the levels of 0.151; 0.167; 0.183; 0.199; and 0.215 g/kg of digestible tryptophan in the feed. For the ratio between digestible amino acids and lysine, the recommendation of Brazilian Tables for Poultry and Swine was followed, except for the digestible tryptophan: digestible lysine ratios, which were 19, 21, 23, 25 and 27 for each treatment. The variation in the digestible tryptophan: digestible lysine ratio promoted changes in performance and in the histological characteristics, improving the results. The digestible tryptophan: digestible lysine ratio of 24.5% in the feed of white laying hens in production stage promotes better animal performance and histological results.
Resumo:
Corn grits that were supplemented with isovaleraldehyde, ethyl butyrate, butyric acid and flavour enhancers were extruded under different processing conditions. Volatile compounds retained in the extrudates were isolated by dynamic headspace and analysed using gas chromatographymass spectrometry. The expansion ratio, density and cut force to break down the extrudates were evaluated and aroma intensity was assessed using a multisample difference test. Butyric acid showed the greatest retention (96.4%), regardless of the extrusion conditions. All compounds were better retained when samples were extruded at 20% feed moisture and 90 degrees C processing temperature (2.981.0%), conditions that also resulted in greater aromatic intensity (moderate to moderate-strong intensity). The addition of volatile compounds reduced the expansion ratio and cut force, whereas the addition of flavour enhancers increased the expansion ratio but reduced ethyl butyrate and butyric acid retention.
Resumo:
With the increasing emphasis on health and well-being, nutrition aspects need to be incorporated as a dimension of product development. Thus, the production of a high-fibre content snack food from a mixture of corn and flaxseed flours was optimized by response surface methodology. The independent variables considered in this study were: feed moisture, process temperature and flaxseed flour addition, as they were found to significantly impact the resultant product. These variables were studied according to a rotatable composite design matrix (-1.68, -1, 0, 1, 1.68). Response variable was the expansion ratio since it has been highly correlated with acceptability. The optimum corn-flaxseed snack obtained presented a sevenfold increase in dietary fibre, almost 100% increase in protein content compared to the pure corn snack, and yielded an acceptability score of 6.93. This acceptability score was similar to those observed for corn snack brands in the market, indicating the potential commercial use of this new product, which can help to increase the daily consumption of dietary fibre.
Resumo:
This study investigated the ability of weevils to transmit Aspergillus flavus and Fusarium verticillioides fungal spores and the consequent production of mycotoxins. For this purpose, corn grain samples were stored in flasks connected to a hose to form a closed system (flasks A and B). Flasks A were inoculated with the following groups: group 1 (corn + weevil); group 2 (corn + A. flavus); group 3 (corn + A. flavus + weevil); group 4 (corn + F. verticillioides); group 5 (corn + E verticillioides + weevil), and group 6 (corn + A. flavus + E verticillioides + weevil). Flasks B contained sterile grains. The samples were incubated for 10, 20 and 30 days, posteriorly, weight, water activity, mycoflora, aflatoxins and fumonisins. The corn grain samples were also submitted to scanning electron microscopy. Our results showed that weevils could enhance corn grains contamination by these fungi, hence, could increase mycotoxins production. These findings demonstrate the importance of weevils as fungal vectors and the need for good manipulation and storage practices of grains. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this work was to evaluate the utilization by corn plants of P from triple superphosphate fertilizer labeled with P-32 (P-32-TSP), and of P from soil as affected by N rates and by the green manures (GM) sunn hemp (Crotalaria juncea) and millet (Pennisetum glaucum). The experiment was carried out using pots filled with 5 kg Oxisol (Rhodic Hapludox). A completely randomized design was used, in a 4x4x2 factorial arrangement, with four replicates. The treatments were: four P rates as TSP (0, 0.175, 0.350, and 0.700 g P per pot); four N rates as urea (0, 0.75, 1.50, and 2.25 g N per pot); and sunn hemp or millet as green manure. The additions of N and P by the GM were taken into account. After grain physiologic maturation, corn dry matter, P contents, accumulated P, and P recovery in the different treatments were measured. P-32-TSP recovery by corn increased with N increasing rates, and decreased with increasing rates of P-32-TSP. The mineral fertilizer provides most of the accumulated P by corn plants. The recovery of P-32-TSP by corn was 13.12% in average. The green manure species influence the assimilation of P-32-TSP by the plants.
Resumo:
Syntesis of carbon nanomaterials from corn waste (DDGS). The world's largest ethanol producer (USA) uses corn as feedstock. DDGS (distillers dried grains with solubles) is the main waste generated from this process (around 32 million t/year). DDGS samples were pyrolyzed at 1000 degrees C in a furnace with controlled atmosphere. The effluent was channeled to a second furnace, in which catalyst substrates were placed. Chromatographic analysis was used to evaluate the gaseous effluents, showing that the catalyst reduced hydrocarbon emissions. The solid products formed were analyzed by SEM and TEM. Graphitic structures and carbon nanofibers, 50 mu m in length and with diameters of 80-200 nm, were formed.
Resumo:
In response to herbivore attack, plants release herbivore-induced plant volatiles (HIPVs) that represent important chemical cues for herbivore natural enemies. Additionally, HIPVs have been shown to mediate other ecological interactions with herbivores. Differently from natural enemies that are generally attracted to HIPVs, herbivores can be either attracted or repelled depending on several biological and ecological parameters. Our study aimed to assess the olfactory response of fall armyworm-mated female moths toward odors released by mechanically and herbivore-induced corn at different time intervals. Results showed that female moths strongly respond to corn volatiles, although fresh damaged corn odors (0-1 h) are not recognized by moths. Moreover, females preferred volatiles released by undamaged plant over herbivore-induced plants at 5-6 h. This preference for undamaged plants may reflect an adaptive strategy of moths to avoid competitors and natural enemies for their offspring. We discussed our results based on knowledge about corn volatile release pattern and raise possible explanations for fall armyworm moth behavior.
Resumo:
Fruit purees, combined or not with polysaccharides, have been used in some studies to elaborate edible films. The present study was conducted to evaluate tensile properties and water vapor barrier of alginate-acerola puree films plasticized with corn syrup, and to study the influence of cellulose whiskers from different origins (cotton fiber or coconut husk fiber, the latter submitted to one- or multi-stage bleaching) on the film properties. The whiskers improved the overall tensile properties (except by elongation) and the water vapor barrier of the films. The films with coconut whiskers, even those submitted only to a one-stage bleaching, presented similar properties to those of films with cotton whiskers, despite the low compatibility between the matrix and the remaining lignin in coconut whiskers. This was probably ascribed to a counterbalancing effect of the higher aspect ratios of the coconut whiskers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To estimate the frequency of anaemia in pregnant women before and after the fortification of flours with Fe. Design: Retrospective study developed from secondary data obtained from medical records. Setting: Two health units in Rio de Janeiro, Brazil. Subjects: Socio-economic, demographic, obstetric and Hb concentration data were collected of 778 pregnant women attending prenatal care. Two study groups were created: the first referred to the period before fortification (G1, n 391), including women whose parturition happened before June 2004; and the second referred to the period after fortification (G2, n 387), including women whose last menstrual cycle happened after June 2005. The Hb cut-off point adopted for anaemia diagnosis was <11.0 g/dl. Results: In linear regression models, when Hb concentration was expressed as a dependent variable, women in G2 presented Hb concentration 0.26 g/dl and 0.36 g/dl higher during the second and third trimesters of pregnancy, respectively, compared with G1. In logistic regression models where the dependent variable was anaemia during the second and third trimesters, it was verified that being a member of G2 was a protective factor against anaemia in the third trimester. Regarding the presence of anaemia at any gestational moment, it was verified that being a member of G2 represented a protective factor against anaemia during pregnancy. Conclusions: Results indicate the protective effect of the fortification of flours with Fe in the fight against gestational anaemia, contributing to prevention and control of this nutritional disorder among pregnant women.
Resumo:
Aflatoxins can cause great economic losses and serious risks to humans and animals health. The largest aflatoxin producers belong to Aspergillus section Flavi and can occur naturally in food commodities. Studies showed that molecular tools as well as the type of sclerotia produced by the strains could be helpful for identification of Aspergillus species and could be correlated with levels of toxin production. The purpose of this work was to characterize the genetic diversity using AFLP technique, the type of sclerotia and the ability of aflatoxin production by isolated strains from corn of different origins in Brazil, and to verify whether qPCR based on aflR and aflP genes is appropriate for estimating the level of aflatoxin production. All the 75 strains were classified as A. flavus and the AFLP technique showed a wide intraspecific variability within them. Regarding sclerotia production, 34% were classified as S and 66% as L type. Among the aflatoxin-producers, 52.8% produced aflatoxin B-1, while 47.2% aflatoxins B-1 and B-2. Statistical analysis showed no correlation between sclerotia production and aflatoxigenicty, and no correlation between the phylogenetic clusters and aflatoxin production. Concerning the relative expression of aflR and aflP, Pearson's correlation test demonstrated low positive correlation between the expression of the aflR and aflP genes and the production of AFB(1) and AFB(2), but showed high positive correlation between aflR and aflP expression. In contrast to the other reference strains, A. oryzae ATCC 7282 showed no amplification of aflR and aflP. The results highlight the need for detection of reliable and reproducible markers with a high positive correlation with aflatoxin production.
Resumo:
Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment.
Resumo:
Ethylene-vinyl acetate copolymer (EVA) with 19% of vinyl acetate and its derivatives modified by hydrolysis of 50 and 100% of the initial vinyl acetate groups were used to produce blends with thermoplastic starch (TPS) plasticized with 30 wt% glycerol. The blends were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy. X-ray diffraction, water absorption, stress-strain mechanical tests, dynamic mechanical analysis and thermogravimetric analysis. In contrast to the blends with unmodified EVA. those made with hydrolyzed EVA were compatible, as demonstrated by the brittle fracture surface analysis and the results of thermal and mechanical tests. The mechanical characteristics and water absorption of the TPS were improved even with a small addition (2.5 wt%) of hydrolyzed EVA. The glass transition temperature rose with the degree of hydrolysis of EVA by 40 and 50 degrees, for the EVA with 50 and 100% hydrolysis, respectively. The addition of hydrolyzed EVA proved to be an interesting approach to improving TPS properties, even when very small quantities were used, such as 2.5 wt%. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The high water content in maca (Lepidium meyenii W.) roots combined with the damage produced during or after harvest makes them vulnerable to attack by enzymes and microorganisms. Although starch degradation has been extensively studied, in maca roots there is a paucity of research regarding the starch reserves. In this paper, parameters of starch degradation are shown to be related to the action of amylolytic enzymes during storage at room temperature. Over the course of three weeks, the starch and protein content, soluble sugar, total amylolytic activity, and alpha- and beta-amylase activity were measured. In addition, the integrity of starch granules was observed by scanning electron microscopy. Despite the evidence of dehydration, there were no significant differences (p <= 0.5) in the total starch content or in the activities of alpha- and beta-amylase. After the third week the roots remained suitable for consumption. The results indicate a postharvest latency that can lead to sprout or to senescence, depending on the environmental conditions. (C) 2012 Elsevier Ltd. All rights reserved.