47 resultados para Copper vapor laser irradiation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glasses containing metallic nanoparticles are promising materials for technological applications in optics and photonics. Although several methods are available to generate nanoparticles in glass, only femtosecond lasers allow controlling it three-dimensionally. In this direction, the present work investigates the generation of copper nanoparticles on the surface and in the bulk of a borosilicate glass by fs-laser irradiation. We verified the formation of copper nanoparticles, after heat treatment, by UV-Vis absorption, transmission electron microscopy and electron diffraction. A preferential growth of copper nanoparticles was observed in the bottom of the irradiated region, which was attributed to self-focusing in the glass. (c) 2012 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the effect of gallium arsenide (GaAs) irradiation (power: 5 mW; intensity: 77.14 mW/cm(2), spot: 0.07 cm(2)) on regenerating skeletal muscles damaged by crotoxin (CTX). Male C57Bl6 mice were divided into six groups (n = 5 each): control, treated only with laser at doses of 1.5 J or 3 J, CTX-injured and, CTX-injured and treated with laser at doses of 1.5 J or 3 J. The injured groups received a CTX injection into the tibialis anterior (TA) muscle. After 3 days, TA muscles were submitted to GaAs irradiation at doses of 1.5 or 3 J (once a day, during 5 days) and were killed on the eighth day. Muscle histological sections were stained with hematoxylin and eosin (H&E) in order to determine the myofiber cross-sectional area (CSA), the previously injured muscle area (PIMA) and the area density of connective tissue. The gene expression of MyoD and myogenin was detected by real-time PCR. GaAs laser at a dose of 3 J, but not 1.5 J, significantly increased the CSA of regenerating myofibers and reduced the PIMA and the area density of intramuscular connective tissue of CTX-injured muscles. MyoD gene expression increased in the injured group treated with GaAs laser at a dose of 1.5 J. The CTX-injured, 3-J GaAs laser-treated, and the CTX-injured and treated with 3-J laser groups showed an increase in myogenin gene expression when compared to the control group. Our results suggest that GaAs laser treatment at a dose of 3 J improves skeletal muscle regeneration by accelerating the recovery of myofiber mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the laboratory effect of Er:YAG laser on ablation rate and morphological changes in human enamel and dentin with varying water flow. Methods: 23 human third molars were sectioned in mesio-distal and buccal-lingual directions. The slabs were flattened and weighted on an analytical laboratory balance (control). A 4-mm(2) area was demarcated and the samples were randomly assigned into three groups according to water flow employed during the laser irradiation (1.0, 1.5, and 2.0 mL/minute). An Er:YAG laser was used to ablate enamel (80.22-J/cm(2), 300 mJ/4Hz) and dentin (96.26-J/cm(2), 250 mJ/4Hz). After irradiation, the samples were immersed in distilled water for 1 hour and then weighted again. The final mass was obtained and laser-irradiated substrate mass loss was calculated by the difference between the initial and final mass. Afterwards, specimens were prepared for SEM. Results: Data were submitted to ANOVA and Tukey's test (P< 0.05). It was observed that the 2.0 mL/minute resulted in a higher mass loss, 1.0 mL/minute showed a lower mass loss, and 1.5 mL/minute demonstrated intermediate results (P< 0.05). The increase of water flow promoted less melting areas and cracks. Furthermore, dentin was more ablated than enamel. It may be concluded that the water flow of Er:YAG laser and the substrates affected the ablation rate. Among the tested parameters, 2.0 mL/minute improved the ability of ablation in enamel and dentin, with less morphologic surface alteration. (Am J Dent 20 12;25:332-336).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate whether Nd:YAG laser irradiation of etched and unetched dentin through an uncured adhesive affected the microtensile bond strength (pTBS). Materials and Methods: Flat dentin surfaces were created in 19 extracted human third molars. Adper Single Bond (SB) adhesive was applied over etched (groups 1 to 3) or unetched dentin (groups 4 to 6). The dentin was then irradiated with a Nd:YAG laser through the uncured adhesive, using 0.75 or 1 W power settings, except for the control groups (groups 1 and 4). The adhesive was light cured and composite crowns were built up. After 24 h, the teeth were sectioned into beams, with cross-sectional areas of 0.49 mm(2), and were stressed under tension. Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha = 5%). Dentin surfaces of fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). Results: Acid etching, laser irradiation, and their interaction significantly affected bonding (p < 0.05). Laser irradiation did not improve bonding of etched dentin to resin (p > 0.05). However, higher pTBS means were found on unetched lased dentin (groups 5 and 6), but only in comparison to group 4, where neither lasing nor etching was performed. Groups 4 to 6 showed the lowest pTBS means among all groups tested (p < 0.05). Laser irradiation did not change the characteristics of the hybrid layers created, while solidification globules were observed on lased dentin surfaces under SEM. Conclusion: Laser irradiation of dentin through the uncured adhesive did not significantly improve the pTBS in comparison to the suggested manufacturer's technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dentin wall structural changes caused by 810-nm-diode laser irradiation can influence the sealing ability of endodontic sealers. The objective of this study was to evaluate the apical leakage of AH Plus and RealSeal resin-based sealers with and without prior diode laser irradiation. Fifty-two single-rooted mandibular premolars were prepared and divided into 4 groups, according to the endodontic sealer used and the use or non-use of laser irradiation. The protocol for laser irradiation was 2.5W, continuous wave in scanning mode, with 4 exposures per tooth. After sample preparation, apical leakage of 50% ammoniacal silver nitrate impregnation was analyzed. When the teeth were not exposed to irradiation, the Real Seal sealer achieved the highest scores, showing the least leakage, with significant differences at the 5% level (Kruskal-Wallis test, p = 0.0004), compared with AH Plus. When the teeth were exposed to the 810-nm-diode laser irradiation, the sealing ability of AH Plus sealer was improved (p = 0282). In the Real Seal groups, the intracanal laser irradiation did not interfere with the leakage index, showing similar results in the GRS and GRSd groups (p = 0.1009).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature changes caused by laser irradiation can promote damage to the surrounding dental tissues. In this study, we evaluated the temperature changes of recently extracted human mandibular incisors during intracanal irradiation with an 810-nm diode laser at different settings. Fifty mandibular incisors were enlarged up to an apical size of ISO No. 40 file. After the final rinse with 17% ethylenediaminetetraacetic acid, 0.2% lauryl sodium sulfate biologic detergent, and sterile water, samples were irradiated with circular movements from apex to crown through five different settings of output power (1.5, 2.0, 2.5, 3.0, and 3.5 W) in continuous mode. The temperature changes were measured on both sides of the apical and middle root thirds using two thermopar devices. A temperature increase of 7 degrees C was considered acceptable as a safe threshold when applying the diode laser. Results: The results showed that only 3.5-W output power increased the outer surface temperature above the critical value. Conclusion: The recommended output power can be stipulated as equal to or less than 3 W to avoid overheating during diode laser irradiation on thin dentin walls. (c) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.1.015006]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-level laser irradiation (LLLI) and recombinant human bone morphogenetic protein type 2 (rhBMP-2) have been used to stimulate bone formation. LLLI stimulates proliferation of osteoblast precursor cells and cell differentiation and rhBMP-2 recruits osteoprogenitor cells to the bone healing area. This in vivo study evaluated the effects of LLLI and rhBMP-2 on the bone healing process in rats. Critical bone defects were created in the parietal bone in 42 animals, and the animals were divided into six treatment groups: (1) laser, (2) 7 mu g of rhBMP-2, (3) laser and 7 mu g of rhBMP-2, (4) 7 mu g of rhBMP-2/monoolein gel, (5) laser and 7 mu g rhBMP-2/monoolein gel, and (6) critical bone defect controls. A gallium-aluminum-arsenide diode laser was used (wavelength 780 nm, output power 60 mW, beam area 0.04 cm(2), irradiation time 80 s, energy density 120 J/cm(2), irradiance 1.5 W/cm(2)). After 15 days, the calvarial tissues were removed for histomorphometric analysis. Group 3 defects showed higher amounts of newly formed bone (37.89%) than the defects of all the other groups (P < 0.05). The amounts of new bone in defects of groups 1 and 4 were not significantly different from each other (24.00% and 24.75%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). The amounts of new bone in the defects of groups 2 and 5 were not significantly different from each other (31.42% and 31.96%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). Group 6 defects had 14.10% new bone formation, and this was significantly different from the amounts in the other groups (P < 0.05). It can be concluded that LLLI administered during surgery effectively accelerated healing of critical bone defects filled with pure rhBMP-2, achieving a better result than LLLI alone or the use of rhBMP-2 alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up-regulation of stress-activated proteins in cancer cells plays a protective role against photodynamic induced apoptosis. Post photodynamic therapy extracted normal rat liver tissue usually shows a fraction of surviving cells, the photodynamic resistant cells, residing in the necrotic region. To treat these photo-dynamic resistant cells a technique has been proposed based on fractionated drug administration of diluted photosensitizer, keeping the net concentration (5 mg/kg) constant, and subsequently varying drug light interval (DLI). Flourescence measurements were made for the presence of photosensitizer in a tissue. For qualitative analysis both histological and morphological studies were made. Although preliminary aim of this approach was not achieved but there were some interesting observation made i.e. for higher dilution of photosensitizer there was a sharp boundary between necrotic and normal portion of tissue. An increase in the absorption coefficient (alpha) from 2.7 -> 2.9 was observed as photosensitizer was diluted while the corresponding threshold dose (D (th)) persistently decreases from (0.10 -> 0.02) J/cm(2) when irradiated with a 635 nm laser fluence of 150 J/cm(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) in vitro and the in vivo development of melanoma in mice after laser irradiation. Methods We performed a controlled in vitro study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The in vivo mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm2, irradiance 2.5 W/cm2 and irradiation times of 60s (dose 150 J/cm2) and 420s (dose 1050 J/cm2) respectively. Results There were no statistically significant differences between the in vitro groups, except for an increase in the hypodiploid melanoma cells (8.48 ± 1.40% and 4.26 ± 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the in vivo experiment where outcome measures for the 150 J/cm2 dose group were not significantly different from controls. For the 1050 J/cm2 dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups. Conclusion LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm2) and high dose (1050 J/cm2) significantly increases melanoma tumor growth in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this study were to evaluate the effect of low-level laser irradiation (LLLI) on bovine oocyte and granulosa cells metabolism during in vitro maturation (IVM) and further embryo development. Cumulus-oocytes complexes (COCs) were subjected (experimental group) or not (control group) to irradiation with LLLI in a 633-nm wavelength and 1 J/cm2 fluency. The COCs were evaluated after 30 min, 8, 16, and 24 h of IVM. Cumulus cells were evaluated for cell cycle status, mitochondrial activity, and viability (flow cytometry). Oocytes were assessed for meiotic progression status (nuclear staining), cell cycle genes content [real-time polymerase chain reaction (PCR)], and signal transduction status (western blot). The COCs were also in vitro fertilized, and the cleavage and blastocyst rates were assessed. Comparisons among groups were statistically performed with 5% significance level. For cumulus cells, a significant increase in mitochondrial membrane potential and the number of cells progressing through the cycle could be observed. Significant increases on cyclin B and cyclin-dependent kinase (CDK4) levels were also observed. Concerning the oocytes, a significantly higher amount of total mitogen-activated protein kinase was found after 8 h of irradiation, followed by a decrease in all cell cycle genes transcripts, exception made for the CDK4. However, no differences were observed in meiotic progression or embryo production. In conclusion, LLLI is an efficient tool to modulate the granulosa cells and oocyte metabolism

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The success of endodontic treatment depends on the complete elimination of microorganisms from the root canal system, thus the search for new procedures to eliminate them is justified. The aim of this study was to assess bacterial reduction after intracanal irradiation with the Er:YAG laser. The canals of 70 extracted human maxillary canines were prepared up to file #40 using 1% NaOCl, irrigated with 17% EDTA, and then washed with physiological solution activated by ultrasound. The roots were sterilized by autoclaving, inoculated with 10 mu l of a suspension containing 1.5 x 10(8) CFU/ml of Enterococcus faecalis ATCC 29212 and incubated at 37A degrees C for 72 h. The canals were irradiated with the Er:YAG laser using two energy settings: 60 mJ and 15 Hz, and 100 mJ and 10 Hz. The remaining bacteria were counted immediately and 48 h after laser irradiation. The results showed a high bacterial reduction at both time points. With 60 mJ and 15 Hz there was an immediate reduction of 99.73% and the reduction was 77.02% after 48 h, and with 100 mJ and 10 Hz there was an immediate reduction of 99.95% and the reduction was 84.52% after 48 h. Although the best results were observed with 100 mJ of energy, the difference between the two settings was not statistically significant. The count performed 48 h after irradiation showed that E. faecalis were able to survive, and can grow even from small numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788 +/- 0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.048001]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The objective of this study was to analyze the bacterial morphology by atomic force microscopy (AFM) after the application of low-level laser therapy (LLLT) in in vitro culture of Staphylococcus aureus ATCC 29213. Background data: Infections caused by S. aureus are among the highest occurring in hospitals and can often colonize pressure ulcers. LLLT is among the methods used to accelerate the healing of ulcers. However, there is no consensus on its effect on bacteria. Materials and methods: After being cultivated and seeded, the cultures were irradiated using wavelengths of 660, 830, and 904 nm at fluences of 0, 1, 2, 3, 4, 5, and 16 J/cm(2). Viable cells of S. aureus strain were counted after 24 h incubation. To analyze the occurrence of morphological changes, the topographical measurement of bacterial cells was analyzed using the AFM. Results: The overall assessment revealed that the laser irradiation reduced the S. aureus growth using 830 and 904 nm wavelengths; the latter with the greatest inhibition of the colony-forming units (CFU/mL) (331.1 +/- 38.19 and 137.38 +/- 21.72). Specifically with 660 nm, the statistical difference occurred only at a fluence of 3 J/cm(2). Topographical analysis showed small changes in morphological conformity of the samples tested. Conclusions: LLLT reduced the growth of S. aureus with 830 and 904 nm wavelengths, particularly with 904 nm at a fluence of 3 J/cm(2), where the greatest topographical changes of the cell structure occurred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of a 1.23% acidulated phosphate fluoride (APF) gel combined with CO2 laser in protecting carious root dentin against further cariogenic challenges. Methods: After a 7-day lead-in period, 12 volunteers wore an intraoral palatal device containing four carious root dentin slabs, treated with APF and APF+CO2 or placebo and placebo+CO2. After a 14-day wash-out period, volunteers were crossed-over to the other treatment arm. During both intraoral phases, specimens were submitted to cariogenic challenges and then evaluated for cross-sectional Knoop microhardness. Results: Two-way ANOVA demonstrated that there was significant effect for both main factors: CO2 laser irradiation (P< 0.0001) and gel treatment (P< 0.0001), and that there was no interaction between them (P= 0.4706). Protection of carious root dentin against further cariogenic challenges may be provided by APF fluoride gel and CO2 laser, but no additive benefit was found by combining such strategies. (Am J Dent 2012;25:114-117).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate, through a crossover 2 x 2 in situ trial, the effect of a desensitizing dentifrice associated with CO2 laser irradiation to control the permeability of eroded root dentin. Background data: Facing the increased prevalence of erosive lesion and the need for preventive means to control painful symptoms related to them. Methods: Eighty slabs of bovine root dentin were subjected to initial erosive challenge (citric acid 0.3%, 2 h), followed by a remineralizing period in artificial saliva (24 h). Specimens were then divided according to dentin treatment: desensitizing dentifrice, desensitizing dentifrice + CO2 laser, fluoride anticavity dentifrice. and fluoride anticavity dentifrice + CO2 laser. After a 2-day lead-in period, 10 volunteers wore an intraoral palatal appliance containing four root dentin slabs, in two phases of 5 days each. During the intraoral phase, one side of the appliance was immersed in 0.3% citric acid, and the opposite side was immersed in deionized water, four times a day. One hour after the immersions, all specimens were brushed with dentifrice slurry provided by the researcher. After a 7-day washout period, volunteers were crossed over on the different dentifrice group. Each phase having been completed, the specimens were evaluated for permeability through an optical microscope. Results: Data were analyzed using ANOVA and no significant difference (p = 0.272) was found between the surface treatments performed on bovine root dentin. Conclusions: It can be concluded that fluoride anticavity or desensitizing dentifrice, regardless of the association with the CO2 laser irradiation, was able to control the permeability of eroded root dentin.