4 resultados para Cooperation between federal entities

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Trypanosomatids of the genera Angomonas and Strigomonas live in a mutualistic association characterized by extensive metabolic cooperation with obligate endosymbiotic Betaproteobacteria. However, the role played by the symbiont has been more guessed by indirect means than evidenced. Symbiont-harboring trypanosomatids, in contrast to their counterparts lacking symbionts, exhibit lower nutritional requirements and are autotrophic for essential amino acids. To evidence the symbiont’s contributions to this autotrophy, entire genomes of symbionts and trypanosomatids with and without symbionts were sequenced here. Results Analyses of the essential amino acid pathways revealed that most biosynthetic routes are in the symbiont genome. By contrast, the host trypanosomatid genome contains fewer genes, about half of which originated from different bacterial groups, perhaps only one of which (ornithine cyclodeaminase, EC:4.3.1.12) derived from the symbiont. Nutritional, enzymatic, and genomic data were jointly analyzed to construct an integrated view of essential amino acid metabolism in symbiont-harboring trypanosomatids. This comprehensive analysis showed perfect concordance among all these data, and revealed that the symbiont contains genes for enzymes that complete essential biosynthetic routes for the host amino acid production, thus explaining the low requirement for these elements in symbiont-harboring trypanosomatids. Phylogenetic analyses show that the cooperation between symbionts and their hosts is complemented by multiple horizontal gene transfers, from bacterial lineages to trypanosomatids, that occurred several times in the course of their evolution. Transfers occur preferentially in parts of the pathways that are missing from other eukaryotes. Conclusion We have herein uncovered the genetic and evolutionary bases of essential amino acid biosynthesis in several trypanosomatids with and without endosymbionts, explaining and complementing decades of experimental results. We uncovered the remarkable plasticity in essential amino acid biosynthesis pathway evolution in these protozoans, demonstrating heavy influence of horizontal gene transfer events, from Bacteria to trypanosomatid nuclei, in the evolution of these pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperation between individuals is an important requisite for the maintenance of social relationships. The purpose of this study was to investigate cooperation in children in the school environment, where individuals could cooperate or not with their classmates in a public goods game. We investigated which of the following variables influenced cooperation in children: sex, group size, and information on the number of sessions. Group size was the only factor to significantly affect cooperation, with small-group children cooperating significantly more than those in large groups. Both sex and information had no effect on cooperation. We suggest that these results reflect the fact that, in small groups, individuals were more efficient in controlling and retaliating theirs peers than in large groups. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyses of spatial relationships and social interactions provide insights into the social structure of animal societies and the ways in which social preferences among and between dyads affect higher order social relationships. In this paper we describe the patterns of spatial associations and social interactions among adult male northern muriquis in order to evaluate the dynamics of their social networks above the dyadic levels. Systematic observations were made on the 17 adult males present in a multi-male/multi-female group from April 2004 through February 2005, and in July 2005. Analyses of their spatial relationships identified two distinct male cliques; some adult males (called "N" males) were more connected to the females and immatures than other adult males ("MU" males), which were more connected to one another. Affiliative interactions were significantly higher among dyads belonging to the same clique than to different cliques. Although frequencies of dyadic agonistic interactions were similarly low among individuals within and between cliques, MU males appeared to be subordinate to N males. Nonetheless, there were no significant differences in the copulation rates estimated for MU males and N males. Mutual benefits of cooperation between MU and N cliques in intergroup encounters might explain their ongoing associations in the same mixed-sex group [Current Zoology 58 (2): 342-352, 2012].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. Results By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. Conclusion We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees. This network of interactions is activated by nutrition-driven stimuli in early larval stages. Our data are consistent with the hypothesis that JH is a key component of the developmental determination of queen-like characters. Finally, we propose a conceptual model of caste differentiation in A. mellifera based on gene-regulatory networks.