13 resultados para Conventional adhesive system
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The aim of this in vitro study was to compare the degradation of resin-dentin bonds of an etch-and-rinse adhesive system to primary and permanent teeth. Flat superficial coronal dentin surfaces from 5 primary second molars and 5 permanent third molars were etched with phosphoric acid and bonded with an adhesive system (Adper Single Bond 2, 3M ESPE). Blocks of resin composite (Z250, 3M ESPE) were built up and the teeth sectioned to produce bonded sticks with a 0.8 mm(2) cross-sectional area. The sticks of each tooth were randomly divided and assigned to be subjected to microtensile testing immediately (24 h) or after aging by water storage (6 months). Data were analyzed by two-way repeated measures ANOVA and Tukey post hoc test (alpha = 0.05). Failure mode was evaluated using a stereomicroscope (400x). Microtensile values significantly decreased after the 6 months aging, independent of the dentin substrate. In 24 h, the values obtained to primary dentin were lower compared with permanent dentin. This difference was not maintained after aging. Adhesive/mixed failure was predominant in all experimental groups. In conclusion, degradation of resin-dentin bonds of the etch-and-rinse adhesive system occurred after 6 months of water storage; however, the reduction in bond strength values was higher for permanent teeth.
Resumo:
This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva) and eroded dentin (pH cycling model - 3x / cola drink for 7 days). Specimens were then reassigned according to restorative material: glass ionomer cement (Ketac (TM) Molar Easy Mix), resin-modified glass ionomer cement (Vitremer (TM)) or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250). Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37 degrees C. The failure mode was evaluated using a stereomicroscope (400x). Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (alpha = 0.05). Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001). For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.
Resumo:
OBJECTIVES: The aim of this study was to evaluate in vivo the bonding of metallic orthodontic brackets with different adhesive systems. MATERIAL AND METHODS: Twenty patients (10.5-15.1 years old) who had sought corrective orthodontic treatment at a University Orthodontic Clinic were evaluated. Brackets were bonded from the right second premolar to the left second premolar in the upper and lower arches using: Orthodontic Concise, conventional Transbond XT, Transbond XT without primer, and Transbond XT associated with Transbond Plus Self-etching Primer (TPSEP). The 4 adhesive systems were used in all patients using a split-mouth design; each adhesive system was used in one quadrant of each dental arch, so that each group of 5 patients received the same bonding sequence. Initial archwires were inserted 1 week after bracket bonding. The number of bracket failures for each adhesive system was quantified over a 6-month period. RESULTS: The number of debonded brackets was: 8- Orthodontic Concise, 2- conventional Transbond XT, 9- Transbond XT without primer, and 1- Transbond XT + TPSEP. By using the Kaplan-Meier methods, statistically significant differences were found between the materials (p=0.0198), and the Logrank test identified these differences. Conventional Transbond XT and Transbond XT + TPSEP adhesive systems were statistically superior to Orthodontic Concise and Transbond XT without primer (p<0.05). There was no statistically significant difference between the dental arches (upper and lower), between the dental arch sides (right and left), and among the quadrants. CONCLUSIONS: The largest number of bracket failures occurred with Orthodontic Concise and Transbond XT without primer systems and few bracket failures occurred with conventional Transbond XT and Transbond XT+TPSEP. More bracket failures were observed in the posterior region compared with the anterior region.
Resumo:
Background. The aim of this study is to critically evaluate the bond strength (BS) of Glass-Ionomer Cements (GIC) to dentine with microtensile (mu TBS) and microshear (mu SBS) BS tests by assessing their rankings and failure patterns. Methods. Samples were made on flat dentine surfaces and submitted to mTBS and mSBS. The materials used were: high viscosity GIC (Ketac (TM) Molar Aplicap-KM), resin-modified GIC (Fuji II-FII), nano-filled resin-modified GIC (Ketac (TM) N100-N100) and an etch-and-rinse adhesive system with a composite resin (Adper (TM) Single Bond 2 and Z100 (TM)-Z100). All tests were performed with a Universal Testing Machine (24 h water storage, crosshead speed of 1 mm/min). Debonded surfaces were examined with a stereomicroscope (x40) to identify the failure mode. The data was analyzed with two-way ANOVA (p < 0.05) and LSD test. Results. Means were statistically different regarding the tests and materials, indicating that values for BS obtained for each material depend on the test performed. Failure analysis revealed that failures produced by mTBS were mainly cohesive for KM and FII. mu SBS failures were mainly adhesive or mixed for all materials. For the mTBS, the rank was Z100 > FII > KM = N100, whereas for the mSBS it was Z100 = FII = KM > N100. Conclusion: It may be concluded that distinct micro-mechanical tests present different failure patterns and rankings depending on the material to be considered.
Resumo:
The aim of this study was to evaluate the resindentin bonds of two simplified etch-and-rinse adhesive after simulated cariogenic and inhibited cariogenic challenge in situ. Dental cavities (4 mm wide, 4 mm long, and 1.5 mm deep) were prepared in 60 bovine teeth with enamel margins. Restorations were bonded with either adhesive Adper Single Bond 2 (3MESPE) or Optibond Solo Plus (Kerr). Forty restorations were included in an intra-oral palatal appliance that was used for 10 adult volunteers while the remaining 20 dental blocks were not submitted to any cariogenic challenge [NC group] and tested immediately. For the simulated cariogenic challenge [C+DA], each volunteer dropped 20% sucrose solution onto all blocks four times a day during 14 days and distilled water twice a day. In the inhibited cariogenic challenge group [C + FA], the same procedure was done, but slurry of fluoride dentifrice (1.100 ppm) was applied instead of water. The restored bovine blocks were sectioned to obtain a slice for cross-sectional Vickers microhardness evaluation and resindentin bonded sticks (0.8 mm2) for resindentin microtensile evaluation. Data were evaluated by two-way ANOVA and Tukey's tests (a = 0.05). Statistically lower microhardness values and degradation of the resindentin bonds were only found in the C + DW group for both adhesives. The in situ model seems to be a suitable short-term methodology to investigate the degradation of the resindentin bonds under a more realistic condition. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 14661471, 2012.
Resumo:
The available options for restoring multiple surface cavities are: amalgam, composite resin, or indirect restorations. Adhesive system and intradentinal pin-retained composite resin restorations should have a similar performance to pin-retained amalgam, regarding resistance to support occlusal forces. Polymerization shrinkage is a major concern when performing direct posterior composite resin restorations and the incremental insertion technique can provide less stress and outstanding margin behavior. Intradentinal pins can potentially enhance composite resin's retention, while reducing gaps caused by polymerization shrinkage. This article reports a clinical case involving an extensive restoration on a posterior tooth with cusp loss that was successfully treated using an intradentinal pin and direct nano-hybrid composite resin restoration.
Resumo:
Objectives: This study aimed to compare the micro-tensile bond strength of methacrylate resin systems to a silorane-based restorative system on dentin after 24 hours and six months water storage. Material and Methods: The restorative systems Adper Single Bond 2/Filtek Z350 (ASB), Clearfil SE Bond/Z350 (CF), Adper SE Plus/Z350 (ASEP) and P90 Adhesive System/Filtek P90 (P90) were applied on flat dentin surfaces of 20 third molars (n=5). The restored teeth were sectioned perpendicularly to the bonding interface to obtain sticks (0.8 mm2) to be tested after 24 hours (24 h) and 6 months (6 m) of water storage, in a universal testing machine at 0.5 mm/min. The data was analyzed via two-way Analysis of Variance/Bonferroni post hoc tests at 5% global significance. Results: Overall outcomes did not indicate a statistical difference for the resin systems (p=0.26) nor time (p=0.62). No interaction between material × time was detected (p=0.28). Mean standard-deviation in MPa at 24 h and 6 m were: ASB 31.38 (4.53) and 30.06 (1.95), CF 34.26 (3.47) and 32.75 (4.18), ASEP 29.54 (4.14) and 33.47 (2.47), P90 30.27 (2.03) and 31.34 (2.19). Conclusions: The silorane-based system showed a similar performance to methacrylate-based materials on dentin. All systems were stable in terms of bond strength up to 6 month of water storage.
Resumo:
Topologies of motor drive systems are studied, aiming the reduction of common-mode (CM) currents. Initially, the aspects concerning the CM currents circulation are analysed. The reason of common-mode voltages generation, the circulating paths for the resulting CM currents and their effects are discussed. Then, a non-conventional drive system configuration is proposed in order to reduce the CM currents and their effects. This configuration comprehends a non-conventional inverter module wired to a motor with an unusual connection. The cables arrangement differs from the standard solution, too. The proposed topology is compared with other ones, like the active circuit for common-mode voltages compensation. The contribution of the configuration to the reduction of CM voltages and currents and their related interferences are evaluated, based on numerical simulations. Some results are presented and discussed regarding the suitability of the proposed configuration as a potential solution to reduce the CM currents effects, when the state of art and implementation cost of drives are taken into account.
Resumo:
Subsurface drip irrigation that uses an emitter protection system to avoid its clogging by roots and soil particles may be viable compared to a conventional system. The objective of this work was to evaluate the performance of a system with emitter protection, and to compare the results with a system that uses a conventional emitter for subsurface drip irrigation. In the system with protection an inexpensive materials polyethylene hose, microtube, connector, and a dripper to control the flow rate were used; and, in the conventional system a commercial emitter was used. After 12 months of evaluation, the system with protector showed good performance, with relative average flow rate of 0.97 and 0.98 in pots with and without crop, respectively, showing no clogging problems and lower cost. In conventional system relative flow rate of 0.51 and 0.98 were observed in pots with and without crop, respectively, also clogging degree by roots of 49.22%, and emitters with soil inside was observed. Thus, the use of emitter with protection presented feasibility for subsurface drip irrigation, under conditions used in this research.
Resumo:
We performed the initial assessment of an alternative pressurized intraventilated (PIV) caging system for laboratory mice that uses direct-current microfans to achieve cage pressurization and ventilation. Twenty-nine pairs of female SPF BALB/c mice were used, with 19 experimental pairs kept in Ply cages and 10 control pairs kept in regular filter-top (FT) cages. Both groups were housed in a standard housing room with a conventional atmospheric control system. For both systems, intracage temperatures were in equilibrium with ambient room temperature. PIV cages showed a significant difference in pressure between days 1 and 8. Air speed (and consequently airflow rate) and the number of air changes hourly in the PIV cages showed decreasing trends. In both systems, ammonia concentrations increased with time, with significant differences between groups starting on day 1. Overall, the data revealed that intracage pressurization and ventilation by using microfans is a simple, reliable system, with low cost, maintenance requirements, and incidence of failures. Further experiments are needed to determine the potential influence of this system on the reproductive performance and pulmonary integrity in mice.
Resumo:
International Journal of Paediatric Dentistry 2012; 22: 459466 Aim. This in vitro study aimed to test the performance of fluorescence-based methods in detecting occlusal caries lesions in primary molars compared to conventional methods. Design. Two examiners assessed 113 sites on 77 occlusal surfaces of primary molars using three fluorescence devices: DIAGNOdent (LF), DIAGNOdent pen (LFpen), and fluorescence camera (VistaProof-FC). Visual inspection (ICDAS) and radiographic methods were also evaluated. One examiner repeated the evaluations after one month. As reference standard method, the lesion depth was determined after sectioning and evaluation in stereomicroscope. The area under the ROC curve (Az), sensitivity, specificity, and accuracy of the methods were calculated at enamel (D1) and dentine caries (D3) lesions thresholds. The intra and interexaminer reproducibility were calculated using the intraclass correlation coefficient (ICC) and kappa statistics. Results. At D1, visual inspection presented higher sensitivities (0.970.99) but lower specificities (0.180.25). At D3, all the methods demonstrated similar performance (Az values around 0.90). Visual and radiographic methods showed a slightly higher specificity (values higher than 0.96) than the fluorescence based ones (values around 0.88). In general, all methods presented high reproducibility (ICC higher than 0.79). Conclusions. Although fluorescence-based and conventional methods present similar performance in detecting occlusal caries lesions in primary teeth, visual inspection alone seems to be sufficient to be used in clinical practice.
Resumo:
Glasses in the system xGeO(2)-(1-x)NaPO3 (0 <= x <= 0.50) were prepared by conventional melting quenching and characterized by thermal analysis, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and P-31 nuclear magnetic resonance (MAS NMR) techniques. The deconvolution of the latter spectra was aided by homonuclear J-resolved and refocused INADEQUATE techniques. The combined analyses of P-31 MAS NMR and O-1s XPS lineshapes, taking charge and mass balance considerations into account, yield the detailed quantitative speciations of the phosphorus, germanium, and oxygen atoms and their respective connectivities. An internally consistent description is possible without invoking the formation of higher-coordinated germanium species in these glasses, in agreement with experimental evidence in the literature. The structure can be regarded, to a first approximation, as a network consisting of P-(2) and P-(3) tetrahedra linked via four-coordinate germanium. As implied by the appearance of P-(3) units, there is a moderate extent of network modifier sharing between phosphate and germanate network formers, as expressed by the formal melt reaction P-(2) + Ge-(4) -> P-(3) + Ge-(3). The equilibrium constant of this reaction is estimated as K = 0.52 +/- 0.11, indicating a preferential attraction of network modifier by the phosphorus component. These conclusions are qualitatively supported by Raman spectroscopy as well as P-31{Na-23} and P-31{Na-23} rotational echo double resonance (REDOR) NMR results. The combined interpretation of O-1s XPS and P-31 MAS NMR spectra shows further that there are clear deviations from a random connectivity scenario: heteroatomic P-O-Ge linkages are favored over homoatomic P-O-P and Ge-O-Ge linkages.
Resumo:
The aim of this study was to evaluate the effect of 2% chlorhexidine digluconate (CHX) on immediate bond strength of etch-and-rinse adhesive to sound (SD) and caries-affected (CAD) primary dentin compared with permanent dentin. Flat dentin surfaces from 20 primary molars (Pri) and 20 permanent molars (Perm) were assigned to 8 experimental groups (n=5) according to tooth type (Pri or Perm), dentin condition (SD or CAD - pH-cycling for 14 days) and treatment (control - C or 60 s application of 2% CHX solution after acid etching - CHX). The bonding system (Adper Single Bond 2) was applied according to manufacturer's instructions followed by resin composite application (Filtek Z250). After 24 h water storage, specimens with cross-section area of 0.8 mm² were prepared for being tested under microtensile test (1 mm/min). Data were submitted to ANOVA and Tukey's post hoc test (α=0.05). Failure mode was evaluated using a stereomicroscope at ×400. Treatment with CHX did not result in higher bond strength values than no pre-treatment (C groups), independently of tooth type. Primary teeth and caries-affected dentin showed significantly lower (p<0.05) bond strength means compared with permanent teeth and sound dentin, respectively. Predominance of adhesive/mixed failure was observed for all groups. CHX did not influence the immediate bond strength to sound or caries-affected dentin of primary and permanent teeth.