8 resultados para Contraction and restructuring politics
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.
Resumo:
CONTEXT: Esophageal dysphagia is the sensation that the ingested material has a slow transit or blockage in its normal passage to the stomach. It is not always associated with motility or transit alterations. OBJECTIVES: To evaluate in normal volunteers the possibility of perception of bolus transit through the esophagus after swallows of liquid and solid boluses, the differences in esophageal contraction and transit with these boluses, and the association of transit perception with alteration of esophageal contraction and/or transit. METHODS: The investigation included 11 asymptomatic volunteers, 4 men and 7 women aged 19-58 years. The subjects were evaluated in the sitting position. They performed swallows of the same volume of liquid (isotonic drink) and solid (macaroni) boluses in a random order and in duplicate. After each swallow they were asked about the sensation of bolus passage through the esophagus. Contractions and transit were evaluated simultaneously by solid state manometry and impedance. RESULTS: Perception of bolus transit occurred only with the solid bolus. The amplitude and area under the curve of contractions were higher with swallows of the solid bolus than with swallows of the liquid bolus. The difference was more evident in swallows with no perception of transit (n = 12) than in swallows with perception (n = 10). The total bolus transit time was longer for the solid bolus than for the liquid bolus only with swallows followed by no perception of transit. CONCLUSION: The results suggest that the perception of esophageal transit may be the consequence of inadequate adaptation of esophageal transit and contraction to the characteristics of the swallowed bolus.
Resumo:
Background: Chronic stress is associated with cardiac remodeling; however the mechanisms have yet to be clarified. Objective: The purpose of this study was test the hypothesis that chronic stress promotes cardiac dysfunction associated to L-type calcium Ca2+ channel activity depression. Methods: Thirty-day-old male Wistar rats (70 - 100 g) were distributed into two groups: control (C) and chronic stress (St). The stress was consistently maintained at immobilization during 15 weeks, 5 times per week, 1h per day. The cardiac function was evaluated by left ventricular performance through echocardiography and by ventricular isolated papillary muscle. The myocardial papillary muscle activity was assessed at baseline conditions and with inotropic maneuvers such as: post-rest contraction and increases in extracellular Ca2+ concentration, in presence or absence of specific blockers L-type calcium channels. Results: The stress was characterized for adrenal glands hypertrophy, increase of systemic corticosterone level and arterial hypertension. The chronic stress provided left ventricular hypertrophy. The left ventricular and baseline myocardial function did not change with chronic stress. However, it improved the response of the papillary muscle in relation to positive inotropic stimulation. This function improvement was not associated with the L-type Ca2+ channel. Conclusion: Chronic stress produced cardiac hypertrophy; however, in the study of papillary muscle, the positive inotropic maneuvers potentiated cardiac function in stressed rats, without involvement of L-type Ca2+ channel. Thus, the responsible mechanisms remain unclear with respect to Ca2+ influx alterations. (Arq Bras Cardiol 2012;99(4):907-914)
Resumo:
Purpose: due to the presence of major masticatory dysfunction in patients with temporomandibular joint (TMJ) ankylosis, this study analyzed mouth opening and EMG activity of masticatory muscles in order to detect changes in these parameters after surgical release of mandible ankylosis. Method: in 7 patients with temporomandibular ankylosis, between 7 and 30 years (median = 9 years), the distance was measured as interincisal maximum active (DIMA) and we recorded the electromyographic activity (EMG) of masseter and temporal muscles during voluntary isometric contraction (VIC) and chewing, comparing the data before and after surgery using the Wilcoxon test. Results: higher values were observed for DIMA after surgery (p=0.0277), the asymmetry index showed no difference between the two evaluated periods for both studied muscles, the values of the EMG during VIC decreased after surgery for the right (p=0.0179) and left (p=0.0179) masseter but not for the temporal muscle, there were no changes in EMG values for the studied muscles during mastication. Conclusion: the surgical release of TMJ ankylosis resulted in an increase of mouth opening and decreased amplitude of action potentials generated during maximum isometric voluntary contraction of the masseter muscle on both sides, this did not change the asymmetry index of the masseter and temporal as well as the electromyographic activity of the temporal muscle bilaterally during isometric contraction and masseter and temporal muscles during mastication.
Resumo:
The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully understood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholine (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle ¯bers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, incorporates the phenomenology of both MCh and FA and reproduces experimental results observed with in vitro exposure of smooth muscle to FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells in a tissue level model. The model can also be used in different biological scales.
Resumo:
The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully w1derstood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholinc (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle fibers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, ir1corporates the phenomenology of both MCh and FA and reproduces experirnental results observed with ir1 vitro exposure of smooth muscle to .FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells ir1 a tissue level model. The model can also be used in different biological scales.
Resumo:
Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.