3 resultados para Container loading problem
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this study, a dynamic programming approach to deal with the unconstrained two-dimensional non-guillotine cutting problem is presented. The method extends the recently introduced recursive partitioning approach for the manufacturer's pallet loading problem. The approach involves two phases and uses bounds based on unconstrained two-staged and non-staged guillotine cutting. The method is able to find the optimal cutting pattern of a large number of pro blem instances of moderate sizes known in the literature and a counterexample for which the approach fails to find known optimal solutions was not found. For the instances that the required computer runtime is excessive, the approach is combined with simple heuristics to reduce its running time. Detailed numerical experiments show the reliability of the method. Journal of the Operational Research Society (2012) 63, 183-200. doi: 10.1057/jors.2011.6 Published online 17 August 2011
Resumo:
The irregular shape packing problem is approached. The container has a fixed width and an open dimension to be minimized. The proposed algorithm constructively creates the solution using an ordered list of items and a placement heuristic. Simulated annealing is the adopted metaheuristic to solve the optimization problem. A two-level algorithm is used to minimize the open dimension of the container. To ensure feasible layouts, the concept of collision free region is used. A collision free region represents all possible translations for an item to be placed and may be degenerated. For a moving item, the proposed placement heuristic detects the presence of exact fits (when the item is fully constrained by its surroundings) and exact slides (when the item position is constrained in all but one direction). The relevance of these positions is analyzed and a new placement heuristic is proposed. Computational comparisons on benchmark problems show that the proposed algorithm generated highly competitive solutions. Moreover, our algorithm updated some best known results. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
According to recent research carried out in the foundry sector, one of the most important concerns of the industries is to improve their production planning. A foundry production plan involves two dependent stages: (1) determining the alloys to be merged and (2) determining the lots that will be produced. The purpose of this study is to draw up plans of minimum production cost for the lot-sizing problem for small foundries. As suggested in the literature, the proposed heuristic addresses the problem stages in a hierarchical way. Firstly, the alloys are determined and, subsequently, the items that are produced from them. In this study, a knapsack problem as a tool to determine the items to be produced from furnace loading was proposed. Moreover, we proposed a genetic algorithm to explore some possible sets of alloys and to determine the production planning for a small foundry. Our method attempts to overcome the difficulties in finding good production planning presented by the method proposed in the literature. The computational experiments show that the proposed methods presented better results than the literature. Furthermore, the proposed methods do not need commercial software, which is favorable for small foundries. (C) 2010 Elsevier Ltd. All rights reserved.