9 resultados para Consistent term structure models
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Long-term survival models have historically been considered for analyzing time-to-event data with long-term survivors fraction. However, situations in which a fraction (1 - p) of systems is subject to failure from independent competing causes of failure, while the remaining proportion p is cured or has not presented the event of interest during the time period of the study, have not been fully considered in the literature. In order to accommodate such situations, we present in this paper a new long-term survival model. Maximum likelihood estimation procedure is discussed as well as interval estimation and hypothesis tests. A real dataset illustrates the methodology.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for the right-censored survival data when immune or cured individuals may be present in the population from which the data is taken. In our approach the number of competing causes of the event of interest follows the Conway-Maxwell-Poisson distribution which generalizes the Poisson distribution. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the proposed model. Also, some discussions on the model selection and an illustration with a real data set are considered.
Resumo:
Consistent in silico models for ADME properties are useful tools in early drug discovery. Here, we report the hologram QSAR modeling of human intestinal absorption using a dataset of 638 compounds with experimental data associated. The final validated models are consistent and robust for the consensus prediction of this important pharmacokinetic property and are suitable for virtual screening applications. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report the discovery by the CoRoT space mission of a new giant planet, CoRoT-20b. The planet has a mass of 4.24 +/- 0.23 M-Jup and a radius of 0.84 +/- 0.04 R-Jup. With a mean density of 8.87 +/- 1.10 g cm(-3), it is among the most compact planets known so far. Evolutionary models for the planet suggest a mass of heavy elements of the order of 800 M-circle plus if embedded in a central core, requiring a revision either of the planet formation models or both planet evolution and structure models. We note however that smaller amounts of heavy elements are expected by more realistic models in which they are mixed throughout the envelope. The planet orbits a G-type star with an orbital period of 9.24 days and an eccentricity of 0.56. The star's projected rotational velocity is v sin i = 4.5 +/- 1.0 km s(-1), corresponding to a spin period of 11.5 +/- 3.1 days if its axis of rotation is perpendicular to the orbital plane. In the framework of Darwinian theories and neglecting stellar magnetic breaking, we calculate the tidal evolution of the system and show that CoRoT-20b is presently one of the very few Darwin-stable planets that is evolving toward a triple synchronous state with equality of the orbital, planetary and stellar spin periods.
Resumo:
In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis - latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.
Resumo:
Studies of consumer-resource interactions suggest that individual diet specialisation is empirically widespread and theoretically important to the organisation and dynamics of populations and communities. We used weighted networks to analyze the resource use by sea otters, testing three alternative models for how individual diet specialisation may arise. As expected, individual specialisation was absent when otter density was low, but increased at high-otter density. A high-density emergence of nested resource-use networks was consistent with the model assuming individuals share preference ranks. However, a density-dependent emergence of a non-nested modular network for core resources was more consistent with the competitive refuge model. Individuals from different diet modules showed predictable variation in rank-order prey preferences and handling times of core resources, further supporting the competitive refuge model. Our findings support a hierarchical organisation of diet specialisation and suggest individual use of core and marginal resources may be driven by different selective pressures.
Resumo:
Forward modeling is commonly applied to gravity field data of impact structures to determine the main gravity anomaly sources. In this context, we have developed 2.5-D gravity models of the Serra da Cangalha impact structure for the purpose of investigating geological bodies/structures underneath the crater. Interpretation of the models was supported by ground magnetic data acquired along profiles, as well as by high resolution aeromagnetic data. Ground magnetic data reveal the presence of short-wavelength anomalies probably related to shallow magnetic sources that could have been emplaced during the cratering process. Aeromagnetic data show that the basement underneath the crater occurs at an average depth of about 1.9 km, whereas in the region beneath the central uplift it is raised to 0.51 km below the current surface. These depths are also supported by 2.5-D gravity models showing a gentle relief for the basement beneath the central uplift area. Geophysical data were used to provide further constraints for numeral modeling of crater formation that provided important information on the structural modification that affected the rocks underneath the crater, as well as on shock-induced modifications of target rocks. The results showed that the morphology is consistent with the current observations of the crater and that Serra da Cangalha was formed by a meteorite of approximately 1.4 km diameter striking at 12 km s-1.
Resumo:
The weakening mechanisms involved in the collapse of complex impact craters are controversial. The Araguainha impact crater, in Brazil, exposes a complex structure of 40 km in diameter, and is an excellent object to address this issue. Its core is dominated by granite. In addition to microstructural observations, magnetic studies reveal its internal fabric acquired during the collapse phase. All granite samples exhibit impact-related planar deformation features (PDFs) and planar fractures (PFs), which were overprinted by cataclasis. Cataclastic deformation has evolved from incipient brittle fracturing to the development of discrete shear bands in the center of the structure. Fracture planes are systematically decorated by tiny grains (<10 mu m) of magnetite and hematite, and the orientation of magnetic lineation and magnetic foliation obtained by the anisotropies of magnetic susceptibility (AMS) and anhysteretic remanence (AAR) are perfectly coaxial in all studied sites. Therefore, we could track the orientation of deformation features which are decorated by iron oxides using the AMS and AAR. The magnetic fabrics show a regular pattern at the borders of the central peak, with orientations consistent with the fabric of sediments at the crater's inner collar and complex in the center of the structure. Both the cataclastic flow revealed from microstructural observations and the structural pattern of the magnetic anisotropy match the predictions from numerical models of complex impact structures. The widespread occurrence of cataclasis in the central peak, and its orientations revealed by magnetic studies indicate that acoustic fluidization likely operates at all scales, including the mineral scales. The cataclastic flow made possible by acoustic fluidization results in an apparent plastic deformation at the macroscopic scale in the core. (C) 2012 Elsevier B.V. All rights reserved.
Testing phenomenological and theoretical models of dark matter density profiles with galaxy clusters
Resumo:
We use the stacked gravitational lensingmass profile of four high-mass (M 1015M ) galaxy clusters around z≈0.3 from Umetsu et al. to fit density profiles of phenomenological [Navarro– Frenk–White (NFW), Einasto, S´ersic, Stadel, Baltz–Marshall–Oguri (BMO) and Hernquist] and theoretical (non-singular Isothermal Sphere, DARKexp and Kang & He) models of the dark matter distribution. We account for large-scale structure effects, including a two-halo term in the analysis.We find that the BMO model provides the best fit to the data as measured by the reduced χ2. It is followed by the Stadel profile, the generalized NFW profile with a free inner slope and by the Einasto profile. The NFW model provides the best fit if we neglect the two-halo term, in agreement with results from Umetsu et al. Among the theoretical profiles, the DARKexp model with a single form parameter has the best performance, very close to that of the BMO profile. This may indicate a connection between this theoretical model and the phenomenology of dark matter haloes, shedding light on the dynamical basis of empirical profiles which emerge from numerical simulations.