4 resultados para Comunicative competence
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The rise of new multinationals in countries like Brazil provides an opportunity to revisit and carefully construct theories of how firms internationalize, a topic on which extant theory is weak. Brazilian firms are "infant multinationals", unlike developed country firms that are "mature multinationals". They are also internationalizing in a very different global context, and can do so on the basis of different competitive advantages than multinationals that came before. Therefore, this study aims at creating subsidies for theory building about early-stage internationalization. Emerging country firms have Production competences as main competitive asset to internationalize, what reflects their competitive positioning in home markets and their entry strategy in international markets. In the case of early-entrants - Western multinationals in the 1950s and Japanese in the 1980s - the Production competence played a key role for successful internationalization. Thus, the focus of the study is the role that the Production competence plays in the internationalization of late-entrants, the emerging country multinationals. The research design considers not only the position of the headquarters but also the initiatives of the subsidiaries and the dynamic interplay between both. The paper allows a better understanding of internationalization processes and the role of Production, when firms start building their own international networks. It brings relevant insights about the paths that are being followed by emerging country multinationals, the difficulties they find, the solutions they develop. These are important inputs not only for new theory building but also for managerial practice. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The embryonic developmental block occurs at the 8-cell stage in cattle and is characterized by a lengthening of the cell cycle and an increased number of embryos that stop development. The maternal-embryonic transition arises at the same stage resulting in the transcription of many genes. Gene expression studies during this stage may contribute to the understanding of the physiological mechanisms involved in the maternal-embryonic transition. Herein we identified genes differentially expressed between embryos with high or low developmental competence to reach the blastocyst stage using differential display PCR. Embryos were analysed according to developmental kinetics: fast cleavage embryos showing 8 cells at 48 h post insemination (hpi) with high potential of development (F8), and embryos with slow cleavage presenting 4 cells at 48 hpi (54) and 8 cells at 90 hpi (S8), both with reduced rates of development to blastocyst. The fluorescence DDPCR method was applied and allowed the recovery of 176 differentially expressed bands with similar proportion between high and low development potential groups (52% to F8 and 48% in S4 and S8 groups). A total of 27 isolated fragments were cloned and sequenced, confirming the expected primer sequences and allowing the identification of 27 gene transcripts. PI3KCA and ITM2B were chosen for relative quantification of mRNA using real-time PCR and showed a kinetic and a time-related pattern of expression respectively. The observed results suggest the existence of two different embryonic genome activation mechanisms: fast-developing embryos activate genes related to embryonic development, and slow-developing embryos activate genes related to cellular survival and/or death.
Resumo:
Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.