3 resultados para Computer supported collaborative learning
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background Educational computer games are examples of computer-assisted learning objects, representing an educational strategy of growing interest. Given the changes in the digital world over the last decades, students of the current generation expect technology to be used in advancing their learning requiring a need to change traditional passive learning methodologies to an active multisensory experimental learning methodology. The objective of this study was to compare a computer game-based learning method with a traditional learning method, regarding learning gains and knowledge retention, as means of teaching head and neck Anatomy and Physiology to Speech-Language and Hearing pathology undergraduate students. Methods Students were randomized to participate to one of the learning methods and the data analyst was blinded to which method of learning the students had received. Students’ prior knowledge (i.e. before undergoing the learning method), short-term knowledge retention and long-term knowledge retention (i.e. six months after undergoing the learning method) were assessed with a multiple choice questionnaire. Students’ performance was compared considering the three moments of assessment for both for the mean total score and for separated mean scores for Anatomy questions and for Physiology questions. Results Students that received the game-based method performed better in the pos-test assessment only when considering the Anatomy questions section. Students that received the traditional lecture performed better in both post-test and long-term post-test when considering the Anatomy and Physiology questions. Conclusions The game-based learning method is comparable to the traditional learning method in general and in short-term gains, while the traditional lecture still seems to be more effective to improve students’ short and long-term knowledge retention.
Resumo:
Aspects related to the users' cooperative work are not considered in the traditional approach of software engineering, since the user is viewed independently of his/her workplace environment or group, with the individual model generalized to the study of collective behavior of all users. This work proposes a process for software requirements to address issues involving cooperative work in information systems that provide distributed coordination in the users' actions and the communication among them occurs indirectly through the data entered while using the software. To achieve this goal, this research uses ergonomics, the 3C cooperation model, awareness and software engineering concepts. Action-research is used as a research methodology applied in three cycles during the development of a corporate workflow system in a technological research company. This article discusses the third cycle, which corresponds to the process that deals with the refinement of the cooperative work requirements with the software in actual use in the workplace, where the inclusion of a computer system changes the users' workplace, from the face to face interaction to the interaction mediated by the software. The results showed that the highest degree of users' awareness about their activities and other system users contribute to a decrease in their errors and in the inappropriate use of the system.
Resumo:
Surveillance Levels (SLs) are categories for medical patients (used in Brazil) that represent different types of medical recommendations. SLs are defined according to risk factors and the medical and developmental history of patients. Each SL is associated with specific educational and clinical measures. The objective of the present paper was to verify computer-aided, automatic assignment of SLs. The present paper proposes a computer-aided approach for automatic recommendation of SLs. The approach is based on the classification of information from patient electronic records. For this purpose, a software architecture composed of three layers was developed. The architecture is formed by a classification layer that includes a linguistic module and machine learning classification modules. The classification layer allows for the use of different classification methods, including the use of preprocessed, normalized language data drawn from the linguistic module. We report the verification and validation of the software architecture in a Brazilian pediatric healthcare institution. The results indicate that selection of attributes can have a great effect on the performance of the system. Nonetheless, our automatic recommendation of surveillance level can still benefit from improvements in processing procedures when the linguistic module is applied prior to classification. Results from our efforts can be applied to different types of medical systems. The results of systems supported by the framework presented in this paper may be used by healthcare and governmental institutions to improve healthcare services in terms of establishing preventive measures and alerting authorities about the possibility of an epidemic.