13 resultados para Component-based systems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Fluorene-based systems have shown great potential as components in organic electronics and optoelectronics (organic photovoltaics, OPVs, organic light emitting diodes, OLEDs, and organic transistors, OTFTs). These systems have drawn attention primarily because they exhibit strong blue emission associated with relatively good thermal stability. It is well-known that the electronic properties of polymers are directly related to the molecular conformations and chain packing of polymers. Here, we used three oligofluorenes (trimer, pentamer, and heptamer) as model systems to theoretically investigate the conformational properties of fluorene molecules, starting with the identification of preferred conformations. The hybrid exchange correlation functional, OPBE, and ZINDO/S-CI showed that each oligomer exhibits a tendency to adopt a specific chain arrangement, which could be distinguished by comparing their UV/vis electronic absorption and C-13 NMR spectra. This feature was used to identify the preferred conformation of the oligomer chains in chloroform-cast films by comparing experimental and theoretical UV/vis and C-13 NMR spectra. Moreover, the oligomer chain packing and dynamics in the films were studied by DSC and several solid state NMR techniques, which indicated that the phase behavior of the films may be influenced by the tendency that each oligomeric chain has to adopt a given conformation.
Resumo:
Graphene has received great attention due to its exceptional properties, which include corners with zero effective mass, extremely large mobilities, this could render it the new template for the next generation of electronic devices. Furthermore it has weak spin orbit interaction because of the low atomic number of carbon atom in turn results in long spin coherence lengths. Therefore, graphene is also a promising material for future applications in spintronic devices - the use of electronic spin degrees of freedom instead of the electron charge. Graphene can be engineered to form a number of different structures. In particular, by appropriately cutting it one can obtain 1-D system -with only a few nanometers in width - known as graphene nanoribbon, which strongly owe their properties to the width of the ribbons and to the atomic structure along the edges. Those GNR-based systems have been shown to have great potential applications specially as connectors for integrated circuits. Impurities and defects might play an important role to the coherence of these systems. In particular, the presence of transition metal atoms can lead to significant spin-flip processes of conduction electrons. Understanding this effect is of utmost importance for spintronics applied design. In this work, we focus on electronic transport properties of armchair graphene nanoribbons with adsorbed transition metal atoms as impurities and taking into account the spin-orbit effect. Our calculations were performed using a combination of density functional theory and non-equilibrium Greens functions. Also, employing a recursive method we consider a large number of impurities randomly distributed along the nanoribbon in order to infer, for different concentrations of defects, the spin-coherence length.
Resumo:
In this paper, a novel method for power quality signal decomposition is proposed based on Independent Component Analysis (ICA). This method aims to decompose the power system signal (voltage or current) into components that can provide more specific information about the different disturbances which are occurring simultaneously during a multiple disturbance situation. The ICA is originally a multichannel technique. However, the method proposes its use to blindly separate out disturbances existing in a single measured signal (single channel). Therefore, a preprocessing step for the ICA is proposed using a filter bank. The proposed method was applied to synthetic data, simulated data, as well as actual power system signals, showing a very good performance. A comparison with the decomposition provided by the Discrete Wavelet Transform shows that the proposed method presented better decoupling for the analyzed data. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Access control is a key component of security in any computer system. In the last two decades, the research on Role Basead Access Control Models was intense. One of the most important components of a Role Based Model is the Role-Permission Relationship. In this paper, the technique of systematic mapping is used to identify, extract and analyze many approaches applied to establish the Role-Permission Relationship. The main goal of this mapping is pointing directions of significant research in the area of Role Based Access Control Models.
Resumo:
This work addresses the solution to the problem of robust model predictive control (MPC) of systems with model uncertainty. The case of zone control of multi-variable stable systems with multiple time delays is considered. The usual approach of dealing with this kind of problem is through the inclusion of non-linear cost constraint in the control problem. The control action is then obtained at each sampling time as the solution to a non-linear programming (NLP) problem that for high-order systems can be computationally expensive. Here, the robust MPC problem is formulated as a linear matrix inequality problem that can be solved in real time with a fraction of the computer effort. The proposed approach is compared with the conventional robust MPC and tested through the simulation of a reactor system of the process industry.
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
The partitioning of Clavulanic Acid (CA) in a novel inexpensive and stable aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The aqueous two-phase systems are formed by mixing both polymers with a salt (NaCl or Na2SO4) and an aqueous solution of CA. The stability of CA on the presence of both polymers was investigated and it was observed that these polymers do not degrade the biomolecule. The effect of PEG-molecular size, polymer concentrations on the commercial CA partitioning has been studied, at 25 degrees C. The data showed that commercial CA was preferentially partitioned for the PEG-rich phase with a partition coefficient (K-CA) between 1 and 12 in the PEG/NaPA aqueous two phase systems supplemented with NaCl and Na2SO4. The partition to the PEG phase was increased in the systems with high polymer concentrations. Furthermore, Na2SO4 caused higher CA preference for the PEG-phase than NaCl. The systems having a composition with 10 wt.% of PEG4000, 20 wt.% of NaPA8000 and 6 wt.% of Na2SO4 were selected as the optimal ones in terms of recovery of CA from fermented broth of Streptomyces clavuligerus. The partitioning results (K-CA = 9.15 +/- 1.06) are competitive with commercial extraction methods of CA (K-CA = 11.91 +/- 2.08) which emphasizes that the system PEG/NaPA/Na2SO4 can be used as a new process to CA purification/concentration from fermented broth. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A power transformer needs continuous monitoring and fast protection as it is a very expensive piece of equipment and an essential element in an electrical power system. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can mislead the conventional protection affecting the power system stability negatively. This study proposes the development of a new algorithm to improve the protection performance by using fuzzy logic, artificial neural networks and genetic algorithms. An electrical power system was modelled using Alternative Transients Program software to obtain the operational conditions and fault situations needed to test the algorithm developed, as well as a commercial differential relay. Results show improved reliability, as well as a fast response of the proposed technique when compared with conventional ones.
Resumo:
Recently, many chaos-based communication systems have been proposed. They can present the many interesting properties of spread spectrum modulations. Besides, they can represent a low-cost increase in security. However, their major drawback is to have a Bit Error Rate (BER) general performance worse than their conventional counterparts. In this paper, we review some innovative techniques that can be used to make chaos-based communication systems attain lower levels of BER in non-ideal environments. In particular, we succinctly describe techniques to counter the effects of finite bandwidth, additive noise and delay in the communication channel. Although much research is necessary for chaos-based communication competing with conventional techniques, the presented results are auspicious. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Companies are currently choosing to integrate logics and systems to achieve better solutions. These combinations also include companies striving to join the logic of material requirement planning (MRP) system with the systems of lean production. The purpose of this article was to design an MRP as part of the implementation of an enterprise resource planning (ERP) in a company that produces agricultural implements, which has used the lean production system since 1998. This proposal is based on the innovation theory, theory networks, lean production systems, ERP systems and the hybrid production systems, which use both components and MRP systems, as concepts of lean production systems. The analytical approach of innovation networks enables verification of the links and relationships among the companies and departments of the same corporation. The analysis begins with the MRP implementation project carried out in a Brazilian metallurgical company and follows through the operationalisation of the MRP project, until its production stabilisation. The main point is that the MRP system should help the company's operations with regard to its effective agility to respond in time to demand fluctuations, facilitating the creation process and controlling the branch offices in other countries that use components produced in the matrix, hence ensuring more accurate estimates of stockpiles. Consequently, it presents the enterprise knowledge development organisational modelling methodology in order to represent further models (goals, actors and resources, business rules, business process and concepts) that should be included in this MRP implementation process for the new configuration of the production system.
Resumo:
We present a simultaneous optical signal-to-noise ratio (OSNR) and differential group delay (DGD) monitoring method based on degree of polarization (DOP) measurements in optical communications systems. For the first time in the literature (to our best knowledge), the proposed scheme is demonstrated to be able to independently and simultaneously extract OSNR and DGD values from the DOP measurements. This is possible because the OSNR is related to maximum DOP, while DGD is related to the ratio between the maximum and minimum values of DOP. We experimentally measured OSNR and DGD in the ranges from 10 to 30 dB and 0 to 90 ps for a 10 Gb/s non-return-to-zero signal. A theoretical analysis of DOP accuracy needed to measure low values of DGD and high OSNRs is carried out, showing that current polarimeter technology is capable of yielding an OSNR measurement within 1 dB accuracy, for OSNR values up to 34 dB, while DGD error is limited to 1.5% for DGD values above 10 ps. For the first time to our knowledge, the technique was demonstrated to accurately measure first-order polarization mode dispersion (PMD) in the presence of a high value of second-order PMD (as high as 2071 ps(2)). (C) 2012 Optical Society of America
Resumo:
The aim of this research was to evaluate economic costs of respiratory and circulatory diseases in the municipality of Cubatao, in the state of Sao Paulo, Brazil. Data on hospital admissions and on missed working days due to hospitalization (for age group 14 to 70 years old) from the database of Sistema Unico de Sa de (SUS - Brazilian National Health System) were used. Results: Based on these data, it was calculated that R$ 22.1 million were spent in the period 2000 to 2009 due to diseases of the respiratory and circulatory systems. Part of these expenses can be directly related to the emission of atmospheric pollutants in the city. In order to estimate the costs related to air pollution, data on Cubatao were compared to data from two other municipalities that are also located at the coast side (Guaruja and Peru be), but which have little industrial activity in comparison to Cubatao. It was verified that, in both, average per capita costs were lower when compared to Cubatao, but that this difference has been decreasing in recent years.
Resumo:
Classical Pavlovian fear conditioning to painful stimuli has provided the generally accepted view of a core system centered in the central amygdala to organize fear responses. Ethologically based models using other sources of threat likely to be expected in a natural environment, such as predators or aggressive dominant conspecifics, have challenged this concept of a unitary core circuit for fear processing. We discuss here what the ethologically based models have told us about the neural systems organizing fear responses. We explored the concept that parallel paths process different classes of threats, and that these different paths influence distinct regions in the periaqueductal gray - a critical element for the organization of all kinds of fear responses. Despite this parallel processing of different kinds of threats, we have discussed an interesting emerging view that common cortical-hippocampal-amygdalar paths seem to be engaged in fear conditioning to painful stimuli, to predators and, perhaps, to aggressive dominant conspecifics as well. Overall, the aim of this review is to bring into focus a more global and comprehensive view of the systems organizing fear responses.