2 resultados para Community property
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The effects of habitat configuration on species persistence are predicted to be most apparent when remaining habitat cover is below 30%. We tested this prediction by comparing vertebrate communities in 21 landscapes located in the southern Amazonia, including 7 control landscapes (similar to 100% of forest cover) and 14 fragmented landscapes (4 x 4 km). The fragmented landscapes retained similar proportions of forest (similar to 25%), but had contrasting configurations, resulting from two different deforestation patterns: the "fish-bone pattern" common in small properties, and the large-property pattern generally used by large ranchers. Vertebrates were surveyed in all landscapes in February-July 2009 with interviews (n = 150). We found a significant difference in reported species richness among the fish-bone, large-property, and control areas (mean = 29.3, 38.8 and 43.5 respectively). Control areas and large-properties tended to have a higher number of specialist species (mean = 13.7, and 11.7, respectively), when compared with the fish-bone pattern (5.1). Vertebrate community composition in the control and large-properties was more similar to one another than to those of the fish-bone landscapes. The number of fragments was the main factor affecting the persistence of species, being negatively associated with specialist species richness. Species richness was also positively related with the size of the largest fragment structurally connected to the studied landscapes (i.e., a regional scale effect). Our results demonstrated that the large-property pattern, which results in less fragmented landscapes, can maintain a more diverse community of large vertebrates, including top predators, which are considered fundamental for maintaining ecosystem integrity. These results support the hypothesis that landscape configuration contributes to the persistence and/or extirpation of species.
Resumo:
Background: Several studies in Drosophila have shown excessive movement of retrogenes from the X chromosome to autosomes, and that these genes are frequently expressed in the testis. This phenomenon has led to several hypotheses invoking natural selection as the process driving male-biased genes to the autosomes. Metta and Schlotterer (BMC Evol Biol 2010, 10:114) analyzed a set of retrogenes where the parental gene has been subsequently lost. They assumed that this class of retrogenes replaced the ancestral functions of the parental gene, and reported that these retrogenes, although mostly originating from movement out of the X chromosome, showed female-biased or unbiased expression. These observations led the authors to suggest that selective forces (such as meiotic sex chromosome inactivation and sexual antagonism) were not responsible for the observed pattern of retrogene movement out of the X chromosome. Results: We reanalyzed the dataset published by Metta and Schlotterer and found several issues that led us to a different conclusion. In particular, Metta and Schlotterer used a dataset combined with expression data in which significant sex-biased expression is not detectable. First, the authors used a segmental dataset where the genes selected for analysis were less testis-biased in expression than those that were excluded from the study. Second, sex-biased expression was defined by comparing male and female whole-body data and not the expression of these genes in gonadal tissues. This approach significantly reduces the probability of detecting sex-biased expressed genes, which explains why the vast majority of the genes analyzed (parental and retrogenes) were equally expressed in both males and females. Third, the female-biased expression observed by Metta and Schltterer is mostly found for parental genes located on the X chromosome, which is known to be enriched with genes with female-biased expression. Fourth, using additional gonad expression data, we found that autosomal genes analyzed by Metta and Schlotterer are less up regulated in ovaries and have higher chance to be expressed in meiotic cells of spermatogenesis when compared to X-linked genes. Conclusions: The criteria used to select retrogenes and the sex-biased expression data based on whole adult flies generated a segmental dataset of female-biased and unbiased expressed genes that was unable to detect the higher propensity of autosomal retrogenes to be expressed in males. Thus, there is no support for the authors' view that the movement of new retrogenes, which originated from X-linked parental genes, was not driven by selection. Therefore, selection-based genetic models remain the most parsimonious explanations for the observed chromosomal distribution of retrogenes.