4 resultados para Combinatória

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes a real-world production planning and scheduling problem occurring at an integrated pulp and paper mill (P&P) which manufactures paper for cardboard out of produced pulp. During the cooking of wood chips in the digester, two by-products are produced: the pulp itself (virgin fibers) and the waste stream known as black liquor. The former is then mixed with recycled fibers and processed in a paper machine. Here, due to significant sequence-dependent setups in paper type changeovers, sizing and sequencing of lots have to be made simultaneously in order to efficiently use capacity. The latter is converted into electrical energy using a set of evaporators, recovery boilers and counter-pressure turbines. The planning challenge is then to synchronize the material flow as it moves through the pulp and paper mills, and energy plant, maximizing customer demand (as backlogging is allowed), and minimizing operation costs. Due to the intensive capital feature of P&P, the output of the digester must be maximized. As the production bottleneck is not fixed, to tackle this problem we propose a new model that integrates the critical production units associated to the pulp and paper mills, and energy plant for the first time. Simple stochastic mixed integer programming based local search heuristics are developed to obtain good feasible solutions for the problem. The benefits of integrating the three stages are discussed. The proposed approaches are tested on real-world data. Our work may help P&P companies to increase their competitiveness and reactiveness in dealing with demand pattern oscillations. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integrated production scheduling and lot-sizing problem in a flow shop environment consists of establishing production lot sizes and allocating machines to process them within a planning horizon in a production line with machines arranged in series. The problem considers that demands must be met without backlogging, the capacity of the machines must be respected, and machine setups are sequence-dependent and preserved between periods of the planning horizon. The objective is to determine a production schedule to minimise the setup, production and inventory costs. A mathematical model from the literature is presented, as well as procedures for obtaining feasible solutions. However, some of the procedures have difficulty in obtaining feasible solutions for large-sized problem instances. In addition, we address the problem using different versions of the Asynchronous Team (A-Team) approach. The procedures were compared with literature heuristics based on Mixed Integer Programming. The proposed A-Team procedures outperformed the literature heuristics, especially for large instances. The developed methodologies and the results obtained are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este estudo faz uma análise sobre o uso de diferentes sistemas de classificação e o atendimento aos padrões estabelecidos pela ISO 18.104:2003 a partir de uma situação clínica fictícia. Foram elaborados diagnósticos e intervenções de enfermagem utilizando a NANDA-I, NIC e CIPE®, e analisou-se a correspondência terminológica destes sistemas de classificação ao modelo proposto pela norma ISO 18.104:2003. Para a construção de diagnósticos de enfermagem, a NANDA-I e a CIPE® adequando-se à norma ISO 18.104:2003. Para a construção das intervenções de enfermagem, a CIPE® atende ao modelo de referência terminológica proposto pela ISO 18104:2003. Por sua vez, a NIC não propõe um modelo de referência terminológica combinatória. A unificação das terminologias de enfermagem depende da revisão, padronização e teste dessas classificações para o estabelecimento de uma linguagem comum e sólida da profissão.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The clustering problem consists in finding patterns in a data set in order to divide it into clusters with high within-cluster similarity. This paper presents the study of a problem, here called MMD problem, which aims at finding a clustering with a predefined number of clusters that minimizes the largest within-cluster distance (diameter) among all clusters. There are two main objectives in this paper: to propose heuristics for the MMD and to evaluate the suitability of the best proposed heuristic results according to the real classification of some data sets. Regarding the first objective, the results obtained in the experiments indicate a good performance of the best proposed heuristic that outperformed the Complete Linkage algorithm (the most used method from the literature for this problem). Nevertheless, regarding the suitability of the results according to the real classification of the data sets, the proposed heuristic achieved better quality results than C-Means algorithm, but worse than Complete Linkage.