3 resultados para Columbia (S.C.)--Canals

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Columbia Channel (CCS) system is a depositional system located in the South Brazilian Basin, south of the Vitoria-Trindade volcanic chain. It lies in a WNW-ESE direction on the continental rise and abyssal plain, at a depth of between 4200 and 5200 m. It is formed by two depocenters elongated respectively south and north of the channel that show different sediment patterns. The area is swept by a deep western boundary current formed by AABW. The system has been previously interpreted has a mixed turbidite-contourite system. More detailed study of seismic data permits a more precise definition of the modern channel morphology, the system stratigraphy as well as the sedimentary processes and control. The modern CCS presents active erosion and/or transport along the channel. The ancient Oligo-Neogene system overlies a ""upper Cretaceous-Paleogene"" sedimentary substratum (Unit U1) bounded at the top by a major erosive ""late Eocene-early Oligocene"" discordance (D2). This ancient system is subdivided into 2 seismic units (U2 and U3). The thick basal U2 unit constitutes the larger part of the system. It consists of three subunits bounded by unconformities: D3 (""Oligocene-Miocene boundary""), D4 (""late Miocene"") and D5 (""late Pliocene""). The subunits have a fairly tabular geometry in the shallow NW depocenter associated with predominant turbidite deposits. They present a mounded shape in the deep NE depocenter, and are interpreted as forming a contourite drift. South of the channel, the deposits are interpreted as a contourite sheet drift. The surficial U3 unit forms a thin carpet of deposits. The beginning of the channel occurs at the end of U1 and during the formation of D2. Its location seems to have been determined by active faults. The channel has been active throughout the late Oligocene and Neogene and its depth increased continuously as a consequence of erosion of the channel floor and deposit aggradation along its margins. Such a mixed turbidite-contourite system (or fan drift) is characterized by frequent, rapid lateral facies variations and by unconformities that cross the whole system and are associated with increased AABW circulation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scanning electron microscopy (SEM) can be used to analyze the presence of debris and smear layer on the internal walls of root canal. This study evaluated the debris and smear removal in flattened root canals using SEM after use of different irrigant agitation protocols. Fifty mandibular incisors were distributed into five groups (n = 10) according to the irrigant agitation protocol used during chemomechanical preparation: conventional syringe irrigation with NaviTip needle (no activation), active scrubbing of irrigant with brush-covered NaviTip FX needle, manual dynamic irrigation, continuous passive ultrasonic irrigation, and apical negative pressure irrigation (EndoVac system). Canals were irrigated with 5 mL of 2.5% NaOCl at each change of instrument and received a final flush with 17% EDTA for 1 min. After instrumentation, the roots were split longitudinally and SEM micrographs at x 100 and x 1,000 were taken to evaluate the amount of debris and smear layer, respectively, in each third. Data were analyzed by KruskalWallis and Dunn's post-hoc tests (a = 5%). Manual dynamic activation left significantly (p < 0.05) more debris inside the canals than the other protocols, while ultrasonic irrigation and EndoVac were the most effective (p < 0.05) for debris removal. Regarding the removal of smear layer, there was no statistically significant difference (p > 0.05) either among the irrigant agitation protocols or between the protocolcanal third interactions. Although none of the irrigant agitation protocols completely removed debris and smear layer from flattened root canals, the machine-assisted agitation systems (ultrasound and EndoVac) removed more debris than the manual techniques. Microsc. Res. Tech. 75:781790, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The configuration and the timing of assembly and break-up of Columbia are still matter of debate. In order to improve our knowledge about the Mesoproterozoic evolution of Columbia, a paleomagnetic study was carried out on the 1420 Ma Indiavai mafic intrusive rocks that crosscut the polycyclic Proterozoic basement of the SW Amazonian Craton, in southwestern Mato Grosso State (Brazil). Alternating field and thermal demagnetization revealed south/southwest ChRM directions with downward inclinations for sixteen analyzed sites. These directions are probably carried by SD/PSD magnetite with high coercivities and high unblocking temperatures as indicated by additional rock magnetic tests, including thermomagnetic data, hysteresis data and the progressive acquisition of isothermal remanent magnetization. Different stable magnetization components isolated in host rocks from the basement 10 km NW away to the Indiavai intrusion, further support the primary origin of the ChRM. A mean of the site mean directions was calculated at Dm = 209.8 degrees, Im = 50.7 degrees (alpha(95) = 8.0 degrees, K = 22.1), which yielded a paleomagnetic pole located at 249.7 degrees E, 57.0 degrees S (A(95) = 8.6 degrees). The similarity of this pole with the recently published 1420 Ma pole from the Nova Guarita dykes in northern Mato Grosso State suggests a similar tectonic framework for these two sites located 600 km apart, implying the bulk rigidity of the Rondonian-San Ignacio crust at that time. Furthermore these data provide new insights on the tectonic significance of the 1100-1000 Ma Nova Brasilandia belt-a major EW feature that cuts across the basement rocks of this province, which can now be interpreted as intracratonic, in contrast to previous interpretation. From a global perspective, a new Mesoproterozoic paleogeography of Columbia has been proposed based on comparison of these 1420 Ma poles and a 1780 Ma pole from Amazonia with other paleomagnetic poles of similar age from Baltica and Laurentia, a reconstruction in agreement with geological correlations. (C) 2012 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.