6 resultados para Code uses

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we perform a thorough analysis of a spectral phase-encoded time spreading optical code division multiple access (SPECTS-OCDMA) system based on Walsh-Hadamard (W-H) codes aiming not only at finding optimal code-set selections but also at assessing its loss of security due to crosstalk. We prove that an inadequate choice of codes can make the crosstalk between active users to become large enough so as to cause the data from the user of interest to be detected by other user. The proposed algorithm for code optimization targets code sets that produce minimum bit error rate (BER) among all codes for a specific number of simultaneous users. This methodology allows us to find optimal code sets for any OCDMA system, regardless the code family used and the number of active users. This procedure is crucial for circumventing the unexpected lack of security due to crosstalk. We also show that a SPECTS-OCDMA system based on W-H 32(64) fundamentally limits the number of simultaneous users to 4(8) with no security violation due to crosstalk. More importantly, we prove that only a small fraction of the available code sets is actually immune to crosstalk with acceptable BER (<10(-9)) i.e., approximately 0.5% for W-H 32 with four simultaneous users, and about 1 x 10(-4)% for W-H 64 with eight simultaneous users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hierarchy of the segmentation cascade responsible for establishing the Drosophila body plan is composed by gap, pair-rule and segment polarity genes. However, no pair-rule stripes are formed in the anterior regions of the embryo. This lack of stripe formation, as well as other evidence from the literature that is further investigated here, led us to the hypothesis that anterior gap genes might be involved in a combinatorial mechanism responsible for repressing the cis-regulatory modules (CRMs) of hairy (h), even-skipped (eve), runt (run), and fushi-tarazu (ftz) anterior-most stripes. In this study, we investigated huckebein (hkb), which has a gap expression domain at the anterior tip of the embryo. Using genetic methods we were able to detect deviations from the wild-type patterns of the anterior-most pair-rule stripes in different genetic backgrounds, which were consistent with Hkb-mediated repression. Moreover, we developed an image processing tool that, for the most part, confirmed our assumptions. Using an hkb misexpression system, we further detected specific repression on anterior stripes. Furthermore, bioinformatics analysis predicted an increased significance of binding site clusters in the CRMs of h 1, eve 1, run 1 and ftz 1 when Hkb was incorporated in the analysis, indicating that Hkb plays a direct role in these CRMs. We further discuss that Hkb and Slp1, which is the other previously identified common repressor of anterior stripes, might participate in a combinatorial repression mechanism controlling stripe CRMs in the anterior parts of the embryo and define the borders of these anterior stripes. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solution of structural reliability problems by the First Order method require optimization algorithms to find the smallest distance between a limit state function and the origin of standard Gaussian space. The Hassofer-Lind-Rackwitz-Fiessler (HLRF) algorithm, developed specifically for this purpose, has been shown to be efficient but not robust, as it fails to converge for a significant number of problems. On the other hand, recent developments in general (augmented Lagrangian) optimization techniques have not been tested in aplication to structural reliability problems. In the present article, three new optimization algorithms for structural reliability analysis are presented. One algorithm is based on the HLRF, but uses a new differentiable merit function with Wolfe conditions to select step length in linear search. It is shown in the article that, under certain assumptions, the proposed algorithm generates a sequence that converges to the local minimizer of the problem. Two new augmented Lagrangian methods are also presented, which use quadratic penalties to solve nonlinear problems with equality constraints. Performance and robustness of the new algorithms is compared to the classic augmented Lagrangian method, to HLRF and to the improved HLRF (iHLRF) algorithms, in the solution of 25 benchmark problems from the literature. The new proposed HLRF algorithm is shown to be more robust than HLRF or iHLRF, and as efficient as the iHLRF algorithm. The two augmented Lagrangian methods proposed herein are shown to be more robust and more efficient than the classical augmented Lagrangian method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforced concrete beam elements are submitted to applicable loads along their life cycle that cause shear and torsion. These elements may be subject to only shear, pure torsion or both, torsion and shear combined. The Brazilian Standard Code ABNT NBR 6118:2007 [1] fixes conditions to calculate the transverse reinforcement area in beam reinforced concrete elements, using two design models, based on the strut and tie analogy model, first studied by Mörsch [2]. The strut angle θ (theta) can be considered constant and equal to 45º (Model I), or varying between 30º and 45º (Model II). In the case of transversal ties (stirrups), the variation of angle α (alpha) is between 45º and 90º. When the equilibrium torsion is required, a resistant model based on space truss with hollow section is considered. The space truss admits an inclination angle θ between 30º and 45º, in accordance with beam elements subjected to shear. This paper presents a theoretical study of models I and II for combined shear and torsion, in which ranges the geometry and intensity of action in reinforced concrete beams, aimed to verify the consumption of transverse reinforcement in accordance with the calculation model adopted As the strut angle on model II ranges from 30º to 45º, transverse reinforcement area (Asw) decreases, and total reinforcement area, which includes longitudinal torsion reinforcement (Asℓ), increases. It appears that, when considering model II with strut angle above 40º, under shear only, transverse reinforcement area increases 22% compared to values obtained using model I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale: NAVA is an assisted ventilatory mode that uses the electrical activity of the diaphragm (Edi) to trigger and cycle the ventilator, and to offer inspiratory assistance in proportion to patient effort. Since Edi varies from breath to breath, airway pressure and tidal volume also vary according to the patient's breathing pattern. Our objective was to compare the variability of NAVA with PSV in mechanically ventilated patients during the weaning phase. Methods: We analyzed the data collected for a clinical trial that compares PSV and NAVA during spontaneous breathing trials using PSV, with PS of 5 cmH2O, and NAVA, with Nava level titrated to generate a peak airway pressure equivalent to PSV of 5 cmH2O (NCT01137271). We captured flow, airway pressure and Edi at 100Hz from the ventilator using a dedicated software (Servo Tracker v2, Maquet, Sweden), and processed the cycles using a MatLab (Mathworks, USA) code. The code automatically detects the tidal volume (Vt), respiratory rate (RR), Edi and Airway pressure (Paw) on a breath-by-breath basis for each ventilatory mode. We also calculated the coefficient of variation (standard deviation, SD, divided by the mean). Results: We analyzed data from eleven patients. The mean Vt was similar on both modes (370 ±70 for Nava and 347± 77 for PSV), the RR was 26±6 for Nava and 26±7 or PSV. Paw was higher for Nava than for PSV (14±1 vs 11±0.4, p=0.0033), and Edi was similar for both modes (12±8 for Nava and 11±6 for PSV). The variability of the respiratory pattern, assessed with the coefficient of variation, was larger for Nava than for PSV for the Vt ( 23%±1% vs 15%±1%, p=0.03) and Paw (17%±1% vs 1% ±0.1%, p=0.0033), but not for RR (21% ±1% vs 16% ±8%, p=0.050) or Edi (33%±14% vs 39% ±16%,p=0.07). Conclusion: The variability of the breathing pattern is high during spontaneous breathing trials independent of the ventilatory mode. This variability results in variability of airway pressure and tidal volume, which are higher on Nava than on PSV. Our results suggest that Nava better reflects the normal variability of the breathing pattern during assisted mechanical ventilation.