2 resultados para Coal seam gas

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on emissions of unburned hydrocarbon species from batch combustion of fixed beds of coal, sugar-cane bagasse, and blends thereof in a pre-heated two-stage laboratory furnace operated in the temperature range of 800-1000 degrees C. The effects of fuel blending, combustion staging, and operating furnace temperatures on emissions of pollutants were assessed. Furnace effluents were analyzed for products of incomplete combustion (PICs) including CO, volatile and semi-volatile hydrocarbons, and particulate matter, as has been reported in Ref. [1]. Emitted unburned hydrocarbons include traces of potentially health-hazardous Polycyclic Aromatic Hydrocarbons (PAHs), which are the focus of this work. Under the batch combustion conditions implemented herein, PAH were only generated during the volatile combustion phase of the fuels. The most prevalent species were in descending order: naphthalene, acenaphthylene, phenanthrene, fluoranthene, pyrene, dibenzofuran, benzofuran, byphenyl, fluorene, 9H-fluoren-9-one, acephenantrylene, benzo[b] fluoranthene, 1-methyl-naphthalene; 2-methyl-naphthalene, benz[a] anthracene and benzo[a] pyrene. PAH yields were the highest from combustion of neat bagasse. Combustion of the blends resulted in lower yields of PAH, than combustion of either of their neat fuel constituents. Increasing the furnace operating temperature enhanced the PAH emissions from bagasse, but had little effect on those from the coal or from the blends. Flue gas treatment in a secondary-stage furnace, upon with additional air, typically reduced PAH yields by promoting oxidation of the primary-stage furnace effluents. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inspection for corrosion of gas storage spheres at the welding seam lines must be done periodically. Until now this inspection is being done manually and has a high cost associated to it and a high risk of inspection personel injuries. The Brazilian Petroleum Company, Petrobras, is seeking cost reduction and personel safety by the use of autonomous robot technology. This paper presents the development of a robot capable of autonomously follow a welding line and transporting corrosion measurement sensors. The robot uses a pair of sensors each composed of a laser source and a video camera that allows the estimation of the center of the welding line. The mechanical robot uses four magnetic wheels to adhere to the sphere's surface and was constructed in a way that always three wheels are in contact with the sphere's metallic surface which guarantees enough magnetic atraction to hold the robot in the sphere's surface all the time. Additionally, an independently actuated table for attaching the corrosion inspection sensors was included for small position corrections. Tests were conducted at the laboratory and in a real sphere showing the validity of the proposed approach and implementation.