6 resultados para Cloud Nine
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Growth potential (delta) is defined as the difference between the population of a microorganism at the end of shelf-life of specific food and its initial population. The determination of 6 of Salmonella and Listeria monocytogenes in RTE vegetables can be very useful to determine likely threats to food safety. However, little is known on the behavior of these microorganisms in several RTE vegetables. Therefore, the aim of this study was to determine the delta of both pathogens in nine different types of RTE vegetables (escarole, collard green, spinach, watercress, arugula, grated carrot, green salad, and mix for yakisoba) stored at refrigeration (7 degrees C) and abuse temperature (15 degrees C). The population of aerobic microorganisms and lactic acid bacteria, including those showing antimicrobial activity has been also determined. Results indicated that L monocytogenes was able to grow (delta >= 0.5 log(10)) in more storage conditions and vegetables than Salmonella. Both microorganisms were inhibited in carrots, although a more pronounced effect has been observed against L monocytogenes. The highest 5 values were obtained when the RTE vegetables were stored 15 degrees C/6 days in collard greens (delta=3.3) and arugula (delta=3.2) (L monocytogenes) and arugula (delta=4.1) and escarole (delta=2.8) (Salmonella). In most vegetables and storage conditions studied, the counts of total aerobic microorganisms raised significantly independent of the temperature of storage (p<0.05). Counts of lactic acid bacteria were higher in vegetables partially or fully stored at abuse temperature with recovery of isolates showing antimicrobial activity. In conclusion, the results of this study show that Salmonella and L monocytogenes may grow and reach high populations in RTE vegetables depending on storage conditions and the definition of effective intervention strategies are needed to control their growth in these products. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Despite the quantum nature of the process, collective scattering by dense cold samples of two-level atoms can be interpreted classically describing the sample as a macroscopic object with a complex refractive index. We demonstrate that resonances in Mie theory can be easily observable in the cooperative scattering by tuning the frequency of the incident laser field or the atomic number. The solution of the scattering problem is obtained for spherical atomic clouds who have the parabolic density characteristic of BECs, and the cooperative radiation pressure force calculated exhibits resonances in the cloud displacement for dense clouds. At odds with uniform clouds which show a complex structure including narrow peaks, these densities show resonances, yet only under the form of quite regular and contrasted oscillations. Copyright (C) EPLA, 2012
Resumo:
Background: Bugula is a speciose genus of marine bryozoans, represented by both endemic and cosmopolitan species distributed in tropical and temperate waters and important to marine biologists because of the occurrence of many species in harbor and fouling communities, therefore as potential invaders. The southeastern Brazilian coast in the southern Atlantic hosts the highest known diversity of the genus, a status intimately associated with the intensity of collecting efforts. Methodology: Morphological data based on the examination of living specimens, scanning electron and light microscopic images, and morphometric analyses were used to assess the diversity of Bugula along the coastal areas of southern, northeastern, and southeastern Brazil. In this study, morphological species boundaries were based mainly on avicularian characters. For two morphologically very similar species, boundaries are partially supported by 16 S rDNA molecular data. Results: Nine species are newly described from Brazil, as follows: Bugula bowiei n. sp. (= Bugula turrita sensu Marcus, 1937) from the southern, northeastern, and southeastern coasts; Bugula foliolata n. sp. (= Bugula flabellata sensu Marcus, 1938), Bugula guara n. sp., Bugula biota n. sp. and Bugula ingens n. sp from the southeastern coast; Bugula gnoma n. sp. and Bugula alba n. sp. from the northeastern coast; Bugula rochae n. sp. (= Bugula uniserialis sensu Marcus, 1937) from the southern coast; and Bugula migottoi n. sp., from the southeastern and southern coasts. Conclusion: The results contribute to the morphological characterization and the knowledge of the species richness of the genus in the southwestern Atlantic (i.e., Brazil), through the description of new species in poorly sampled areas and also on the southeastern coast of that country. Additionally, the taxonomic status of the Brazilian specimens attributed to B. flabellata, B. turrita and B. uniserialis are clarified by detailed studies on zooidal and avicularia morphology.
Resumo:
Large fine mode-dominated aerosols (submicron radius) in size distributions retrieved from the Aerosol Robotic Network (AERONET) have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low-altitude cloud such as stratocumulus or fog. Retrievals with cloud-processed aerosol are sometimes bimodal in the accumulation mode with the larger-size mode often similar to 0.4-0.5 mu m radius (volume distribution); the smaller mode, typically similar to 0.12 to similar to 0.20 mu m, may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the "shoulder" of larger-size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near-cloud environment and higher overall AOD than typically obtained from remote sensing owing to bias toward sampling at low cloud fraction.
Resumo:
Cloud point extraction (CPE) was employed for separation and preconcentration prior to the determination of nickel by graphite furnace atomic absorption spectrometry (GFAAS), flame atomic absorption spectrometry (FAAS) or UV-Vis spectrophotometry. Di-2-pyridyl ketone salicyloylhydrazone (DPKSH) was used for the first time as a complexing agent in CPE. The nickel complex was extracted from the aqueous phase using the Triton X-114 surfactant. Under optimized conditions, limits of detection obtained with GFAAS, FAAS and UV-Vis spectrophotometry were 0.14, 0.76 and 1.5 mu g L-1, respectively. The extraction was quantitative and the enrichment factor was estimated to be 27. The method was applied to natural waters, hemodialysis concentrates, urine and honey samples. Accuracy was evaluated by analysis of the NIST 1643e Water standard reference material.
Resumo:
The development of cloud computing services is speeding up the rate in which the organizations outsource their computational services or sell their idle computational resources. Even though migrating to the cloud remains a tempting trend from a financial perspective, there are several other aspects that must be taken into account by companies before they decide to do so. One of the most important aspect refers to security: while some cloud computing security issues are inherited from the solutions adopted to create such services, many new security questions that are particular to these solutions also arise, including those related to how the services are organized and which kind of service/data can be placed in the cloud. Aiming to give a better understanding of this complex scenario, in this article we identify and classify the main security concerns and solutions in cloud computing, and propose a taxonomy of security in cloud computing, giving an overview of the current status of security in this emerging technology.