11 resultados para Closing the loop
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The add protection effect promoted by traces of PdCl2 in [Ni(dmgH)(2)] spot tests was elucidated from confocal Raman microscopy imaging, which revealed the formation of protecting layers of [Pd(dmgH)(2)] closing the extremities of the [Ni(dmgH)(2)] filaments.
Resumo:
The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 degrees of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b = 47 degrees +/- 20 degrees, 25 degrees +/- 20 degrees. This direction is close to the direction of the ISMF that shapes the heliosphere, l, b = 33 degrees +/- 4 degrees, 55 degrees +/- 4 degrees, as traced by the center of the "Ribbon" of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l approximate to 0 degrees -> 80 degrees and b approximate to 0 degrees -> 30 degrees, where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of +/- 0 degrees.25 pc(-1). This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of +/- 23 degrees. The ordered component and standard relations between polarization, color excess, and H-o column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at +/- 975 angstrom does not appear to play a role in grain alignment for the low-density ISM studied here.
Resumo:
Background We have previously demonstrated that increased rates of superoxide generation by extra-mitochondrial enzymes induce the activation of the mitochondrial ATP-sensitive potassium channel (mitoKATP) in the livers of hypertriglyceridemic (HTG) mice. The resulting mild uncoupling mediated by mitoKATP protects mitochondria against oxidative damage. In this study, we investigate whether immune cells from HTG mice also present increased mitoKATP activity and evaluate the influence of this trait on cell redox state and viability. Methods Oxygen consumption (Clark-type electrode), reactive oxygen species production (dihydroethidium and H2-DCF-DA probes) and cell death (annexin V, cytocrome c release and Trypan blue exclusion) were determined in spleen mononuclear cells. Results HTG mice mononuclear cells displayed increased mitoKATP activity, as evidenced by higher resting respiration rates that were sensitive to mitoKATP antagonists. Whole cell superoxide production and apoptosis rates were increased in HTG cells. Inhibition of mitoKATP further increased the production of reactive oxygen species and apoptosis in these cells. Incubation with HTG serum induced apoptosis more strongly in WT cells than in HTG mononuclear cells. Cytochrome c release into the cytosol and caspase 8 activity were both increased in HTG cells, indicating that cell death signaling starts upstream of the mitochondria but does involve this organelle. Accordingly, a reduced number of blood circulating lymphocytes was found in HTG mice. Conclusions These results demonstrate that spleen mononuclear cells from hyperlipidemic mice have more active mitoKATP channels, which downregulate mitochondrial superoxide generation. The increased apoptosis rate observed in these cells is exacerbated by closing the mitoKATP channels. Thus, mitoKATP opening acts as a protective mechanism that reduces cell death induced by hyperlipidemia.
Resumo:
In the present paper we generalize the concept of groups with triality and apply it to the theory of the Moufang, Bol and Bruck loops. Such generalizations allow us to reduce certain problems from the loop theory to problems in the theory of groups.
Resumo:
Objective: The objective of this study was to determine the frequency of signs and symptoms of temporomandibular disorder (TMD) in fibromyalgic patients. Methods: Sixty subjects of both sexes (mean age, 49.2 +/- 13.8 years) with fibromyalgia (FM) diagnosis were included in this study. All patients were examined by a calibrated investigator to identify the presence of TMD using the Research Diagnostic Criteria for TMD. Results: The most common signs (A) and symptoms (B) reported by FM patients were (A) pain in the masticatory muscles (masseter, 80%; posterior digastric, 76.7%), pain in the temporomandibular joint (83.3%), and 33.3% and 28.3%, respectively, presented joint sounds when opening and closing the mouth; (B) headache (97%) and facial pain (81.7%). In regard to the classic triad for the diagnosis of the TMD, it was found that 35% of the FM patients presented, at the same time, pain, joint sounds, and alteration of the mandibular movements. It was verified that myofascial pain without limitation of mouth opening was the most prevalent diagnosis (47%) for the RDC subgroup I. For the subgroup II, the disk displacement with reduction was the most prevalent diagnosis (21.6%). For the subgroup III, 36.7% of the subjects presented osteoarthritis. Conclusions: Thus, there is a high prevalence of signs and symptoms of TMD in FM patients, indicating the need for an integrated diagnosis and treatment of these patients, which suggest that the FM could be a medium- or long-term risk factor for the development of TMD.
Resumo:
Dimensionality reduction is employed for visual data analysis as a way to obtaining reduced spaces for high dimensional data or to mapping data directly into 2D or 3D spaces. Although techniques have evolved to improve data segregation on reduced or visual spaces, they have limited capabilities for adjusting the results according to user's knowledge. In this paper, we propose a novel approach to handling both dimensionality reduction and visualization of high dimensional data, taking into account user's input. It employs Partial Least Squares (PLS), a statistical tool to perform retrieval of latent spaces focusing on the discriminability of the data. The method employs a training set for building a highly precise model that can then be applied to a much larger data set very effectively. The reduced data set can be exhibited using various existing visualization techniques. The training data is important to code user's knowledge into the loop. However, this work also devises a strategy for calculating PLS reduced spaces when no training data is available. The approach produces increasingly precise visual mappings as the user feeds back his or her knowledge and is capable of working with small and unbalanced training sets.
Resumo:
Catenary risers can present during installation a very low tension close to seabed, which combined with torsion moment can lead to a structural instability, resulting in a loop. This is undesirable once it is possible that the loop turns into a kink, creating damage. This work presents a numerical methodology to analyze the conditions of loop formation in catenary risers. Stability criteria were applied to finite element models, including geometric nonlinearities and contact constraint due to riser-seabed interaction. The classical Greenhill's formula was used to predict the phenomenon and parametric analysis shows a “universal plot” able to predict instability in catenaries using a simple equation that can be applied for typical risers installation conditions and, generically, for catenary lines under torsion.
Resumo:
Prokineticin receptors (PROKR) are G protein-coupled receptors (GPCR) that regulate diverse biological processes, including olfactory bulb neurogenesis and GnRH neuronal migration. Mutations in PROKR2 have been described in patients with varying degrees of GnRH deficiency and are located in diverse functional domains of the receptor. Our goal was to determine whether variants in the first intracellular loop (ICL1) of PROKR2 (R80C, R85C, and R85H) identified in patients with hypogonadotropic hypogonadism interfere with receptor function and to elucidate the mechanisms of these effects. Because of structural homology among GPCR, clarification of the role of ICL1 in PROKR2 activity may contribute to a better understanding of this domain across other GPCR. The effects of the ICL1 PROKR2 mutations on activation of signal transduction pathways, ligand binding, and receptor expression were evaluated. Our results indicated that the R85C and R85H PROKR2 mutations interfere only modestly with receptor function, whereas the R80C PROKR2 mutation leads to a marked reduction in receptor activity. Cotransfection of wild-type (WT) and R80C PROKR2 showed that the R80C mutant could exert a dominant negative effect on WT PROKR2 in vitro by interfering with WT receptor expression. In summary, we have shown the importance of Arg80 in ICL1 for PROKR2 expression and demonstrate that R80C PROKR2 exerts a dominant negative effect on WT PROKR2. (Molecular Endocrinology 26: 1417-1427, 2012)
Manipulation effects of prior exercise intensity feedback by the Borg scale during open-loop cycling
Resumo:
Objective To verify the effects of exercise intensity deception by the Borg scale on the ratings of perceived exertion (RPE), heart rate (HR) and performance responses during a constant power output open-loop exercise. Methods Eight healthy men underwent a maximal incremental test on a cycle ergometer to identify the peak power output (PPO) and heart rate deflection point (HRDP). Subsequently, they performed a constant power output trial to exhaustion set at the HRDP intensity, in deception (DEC) and informed (INF) conditions: DEC-subjects were told that they would be cycling at an intensity corresponding to two categories below the RPE quantified at the HRDP; INF-subjects were told that they would cycle at the exact intensity corresponding to the RPE quantified at the HRDP. Results The PPO and power output at the HRDP obtained in maximal incremental tests were 247.5 +/- 32.1 W and 208.1 +/- 27.1 W, respectively. No significant difference in the time to exhaustion was found between DEC (525 +/- 244 s) or INF (499 +/- 224 s) trials. The slope and the first and second measurements of the RPE and HR parameters showed no significant difference between trials. Conclusions Psychophysiological variables such as RPE and HR as well as performance were not affected when exercise intensity was deceptively manipulated via RPE scores. This may suggest that unaltered RPE during exercise is a regulator of performance in this open-loop exercise.
Resumo:
Within the superfield approach, we discuss the two-dimensional noncommutative super-QED. Its all-order finiteness is explicitly shown. Copyright (C) EPLA, 2012
Resumo:
Xylanases (EC 3.2.1.8 endo-1,4-glycosyl hydrolase) catalyze the hydrolysis of xylan, an abundant hemicellulose of plant cell walls. Access to the catalytic site of GH11 xylanases is regulated by movement of a short beta-hairpin, the so-called thumb region, which can adopt open or closed conformations. A crystallographic study has shown that the D11F/R122D mutant of the GH11 xylanase A from Bacillus subtilis (BsXA) displays a stable "open" conformation, and here we report a molecular dynamics simulation study comparing this mutant with the native enzyme over a range of temperatures. The mutant open conformation was stable at 300 and 328 K, however it showed a transition to the closed state at 338 K. Analysis of dihedral angles identified thumb region residues Y113 and T123 as key hinge points which determine the open-closed transition at 338 K. Although the D11F/R122D mutations result in a reduction in local inter-intramolecular hydrogen bonding, the global energies of the open and closed conformations in the native enzyme are equivalent, suggesting that the two conformations are equally accessible. These results indicate that the thumb region shows a broader degree of energetically permissible conformations which regulate the access to the active site region. The R122D mutation contributes to the stability of the open conformation, but is not essential for thumb dynamics, i.e., the wild type enzyme can also adapt to the open conformation.