13 resultados para Climatic Variability of the Mediterranean Paleo-circulation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the meridional overturning circulation on tropical Atlantic climate and variability has been investigated using the atmosphere-ocean coupled model Speedy-MICOM (Miami Isopycnic Coordinate Ocean Model). In the ocean model MICOM the strength of the meridional overturning cell can be regulated by specifying the lateral boundary conditions. In case of a collapse of the basinwide meridional overturning cell the SST response in the Atlantic is characterized by a dipole with a cooling in the North Atlantic and a warming in the tropical and South Atlantic. The cooling in the North Atlantic is due to the decrease in the strength of the western boundary currents, which reduces the northward advection of heat. The warming in the tropical Atlantic is caused by a reduced ventilation of water originating from the South Atlantic. This effect is most prominent in the eastern tropical Atlantic during boreal summer when the mixed layer attains its minimum depth. As a consequence the seasonal cycle as well as the interannual variability in SST is reduced. The characteristics of the cold tongue mode are changed: the variability in the eastern equatorial region is strongly reduced and the largest variability is now in the Benguela, Angola region. Because of the deepening of the equatorial thermocline, variations in the thermocline depth in the eastern tropical Atlantic no longer significantly affect the mixed layer temperature. The gradient mode remains unaltered. The warming of the tropical Atlantic enhances and shifts the Hadley circulation. Together with the cooling in the North Atlantic, this increases the strength of the subtropical jet and the baroclinicity over the North Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrographic data collected during surveys carried out in austral winter 2003 and summer 2004 are used to analyze the distributions of temperature (T) and salinity (S) over the continental shelf and slope of eastern South America between 27 degrees S and 39 degrees S. The water mass structure and the characteristics of the transition between subantarctic and subtropical shelf water (STSW), referred to as the subtropical shelf front (STSF), as revealed by the vertical structure of temperature and salinity are discussed. During both surveys, the front intensifies downward and extends southwestward from the near coastal zone at 33 degrees S to the shelf break at 36 degrees S. In austral winter subantarctic shelf water (SASW), derived from the northern Patagonia shelf, forms a vertically coherent cold wedge of low salinity waters that locally separate the outer shelf STSW from the fresher inner shelf Plata Plume Water (PPW) derived from the Rio de la Plata. Winter T-S diagrams and cross-shelf T and S distributions indicate that mixtures of PPW and tropical water only occur beyond the northernmost extent of pure SASW, and form STSW and an inverted thermocline characteristic of this region. In summer 2004, dilution of Tropical water (TW) occurs at two distinct levels: a warm near surface layer, associated to PPW-TW mixtures, similar to but significantly warmer than winter STSW, and a colder (T similar to 16 degrees C) salinity minimum layer at 40-50 m depth, created by SASW-STSW mixtures across the STSF. In winter, the salinity distribution controls the density structure creating a cross-shore density gradient, which prevents isopycnal mixing across the STSF. Temperature stratification in summer induces a sharp pycnocline providing cross-shelf isopycnal connections across the STSF. Cooling and freshening of the upper layer observed at stations collected along the western edge of the Brazil Current suggest offshore export of shelf waters. Low T and S filaments, evident along the shelf break in the winter data, suggest that submesoscale eddies may enhance the property exchange across the shelf break. These observations suggest that as the subsurface shelf waters converge at the STSF, they flow southward along the front and are expelled offshore, primarily along the front axis. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study analyzes important aspects of the tropical Atlantic Ocean from simulations of the fourth version of the Community Climate System Model (CCSM4): the mean sea surface temperature (SST) and wind stress, the Atlantic warm pools, the principal modes of SST variability, and the heat budget in the Benguela region. The main goal was to assess the similarities and differences between the CCSM4 simulations and observations. The results indicate that the tropical Atlantic overall is realistic in CCSM4. However, there are still significant biases in the CCSM4 Atlantic SSTs, with a colder tropical North Atlantic and a hotter tropical South Atlantic, that are related to biases in the wind stress. These are also reflected in the Atlantic warm pools in April and September, with its volume greater than in observations in April and smaller than in observations in September. The variability of SSTs in the tropical Atlantic is well represented in CCSM4. However, in the equatorial and tropical South Atlantic regions, CCSM4 has two distinct modes of variability, in contrast to observed behavior. A model heat budget analysis of the Benguela region indicates that the variability of the upper-ocean temperature is dominated by vertical advection, followed by meridional advection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information about rainfall erosivity is important during soil and water conservation planning. Thus, the spatial variability of rainfall erosivity of the state Mato Grosso do Sul was analyzed using ordinary kriging interpolation. For this, three pluviograph stations were used to obtain the regression equations between the erosivity index and the rainfall coefficient EI30. The equations obtained were applied to 109 pluviometric stations, resulting in EI30 values. These values were analyzed from geostatistical technique, which can be divided into: descriptive statistics, adjust to semivariogram, cross-validation process and implementation of ordinary kriging to generate the erosivity map. Highest erosivity values were found in central and northeast regions of the State, while the lowest values were observed in the southern region. In addition, high annual precipitation values not necessarily produce higher erosivity values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavioral inhibitory effect of methanol extracts from neem leaves (Azadirachta indica A. Juss) at different concentrations (0, 10,000, 18,000, 32,000 and 56,000 ppm) was evaluated using naive and experienced medflies (Ceratitis capitata (Wied.)) ovipositing on the fruits of grape cv. 'Italia'. The grapes were immersed in the specific treatments and were exposed for 24 h to 3 pairs of female and male medflies, both nave and experienced, in a choice test. At concentrations >= 18,000 ppm, the extract that was applied to the grapes inhibited oviposition. The previous experience with treated grapes did not affect the response of the medflies. This study is the first step toward the application of the behavior control of the medflies as a tool in grape vineyards. The potential for using oviposition inhibitory in behavioral control of C. capitata are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we use a coupled ocean-atmosphere model to investigate the impact of the interruption of Agulhas leakage of Indian ocean water on the tropical Atlantic, a region where strong coupled ocean-atmosphere interactions occur. The effect of a shut down of leakage of Indian ocean water is isolated from the effect of a collapse of the MOC. In our experiments, the ocean model is forced with boundary conditions in the southeastern corner of the domain that correspond to no interocean exchange of Indian ocean water into the Atlantic. The southern boundary condition is taken from the Levitus data and ensures an MOC in the Atlantic. Within this configuration, instead of warm and salty Indian ocean water temperature (cold) and salinity (fresh) anomalies of southern ocean origin propagate into the South Atlantic and eventually reach the equatorial region, mainly in the thermocline. This set up mimics the closure of the ""warm water path"" in favor of the ""cold water path"". As part of the atmospheric response, there is a northward shift of the intertropical convergence zone (ITCZ). The changes in trade winds lead to reduced Ekman pumping in the equatorial region. This leads to a freshening and warming of the surface waters along the equator. Especially in the Cold Tongue region, the cold and fresh subsurface anomalies do not reach the surface due to the reduced upwelling. The anomaly signals are transported by the equatorial undercurrent and spread away from the equator within the thermocline. Part of the anomaly eventually reaches the Tropical North Atlantic, where it affects the Guinea Dome. Surprisingly, the main effect at the surface is small on the equator and relatively large at the Guinea Dome. In the atmosphere, the northward shift of the ITCZ is associated with a band of negative precipitation anomalies and higher salinities over the Tropical South Atlantic. An important implication of these results is that the modified water characteristics due to a shut down of the Agulhas leakage remain largely unaffected when crossing the equatorial Atlantic and therefore can affect the deepwater formation in the North Atlantic. This supports the hypothesis that the Agulhas leakage is an important source region for climate change and decadal variability of the Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents some of the results of ethnoarchaeological research on ceramic technology I have conducted among the Asurini do Xingu, an Amazonian indigenous population inhabiting a village in the margins of the Xingu River, Para, Brazil. Based on collected data, presented throughout the article, I discuss the reasons behind the formal, quantitative, spatial and relational variability of the Asurini ceramic vessels. This work will demonstrate that these distinct dimensions of variability are related to the potters` technological choices during the vessels` production process, the ceramic teaching-learning structure, and the type, frequency, method and context of use of the same vessels. I try to make clear the different practical and symbolic aspects that may influence the production, use, reuse, storage and discard processes of the vessels. Furthermore, I compare the Asurini context with other ethnographic contexts and try to distinguish regularities that may serve as interpretative references to the study of archaeological ceramic assemblages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: NAVA is an assisted ventilatory mode that uses the electrical activity of the diaphragm (Edi) to trigger and cycle the ventilator, and to offer inspiratory assistance in proportion to patient effort. Since Edi varies from breath to breath, airway pressure and tidal volume also vary according to the patient's breathing pattern. Our objective was to compare the variability of NAVA with PSV in mechanically ventilated patients during the weaning phase. Methods: We analyzed the data collected for a clinical trial that compares PSV and NAVA during spontaneous breathing trials using PSV, with PS of 5 cmH2O, and NAVA, with Nava level titrated to generate a peak airway pressure equivalent to PSV of 5 cmH2O (NCT01137271). We captured flow, airway pressure and Edi at 100Hz from the ventilator using a dedicated software (Servo Tracker v2, Maquet, Sweden), and processed the cycles using a MatLab (Mathworks, USA) code. The code automatically detects the tidal volume (Vt), respiratory rate (RR), Edi and Airway pressure (Paw) on a breath-by-breath basis for each ventilatory mode. We also calculated the coefficient of variation (standard deviation, SD, divided by the mean). Results: We analyzed data from eleven patients. The mean Vt was similar on both modes (370 ±70 for Nava and 347± 77 for PSV), the RR was 26±6 for Nava and 26±7 or PSV. Paw was higher for Nava than for PSV (14±1 vs 11±0.4, p=0.0033), and Edi was similar for both modes (12±8 for Nava and 11±6 for PSV). The variability of the respiratory pattern, assessed with the coefficient of variation, was larger for Nava than for PSV for the Vt ( 23%±1% vs 15%±1%, p=0.03) and Paw (17%±1% vs 1% ±0.1%, p=0.0033), but not for RR (21% ±1% vs 16% ±8%, p=0.050) or Edi (33%±14% vs 39% ±16%,p=0.07). Conclusion: The variability of the breathing pattern is high during spontaneous breathing trials independent of the ventilatory mode. This variability results in variability of airway pressure and tidal volume, which are higher on Nava than on PSV. Our results suggest that Nava better reflects the normal variability of the breathing pattern during assisted mechanical ventilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study uses the global Ocean Topography Experiment (TOPEX)/Jason-1 altimeters` time series to estimate the 13-yr trend in sea surface height anomaly. These trends are estimated at each grid point by two methods: one fits a straight line to the time series and the other is based on the difference between the average height between the two halves of the time series. In both cases the trend shows large regional variability, mostly where the intense western boundary currents turn. The authors hypothesize that the regional variability of the sea surface height trends leads to changes in the local geostrophic transport. This in turn affects the instability-related processes that generate mesoscale eddies and enhances the Rossby wave signals. This hypothesis is verified by estimates of the trend of the amplitude of the filtered sea surface height anomaly that contains the spectral bands associated with Rossby waves and mesoscale eddies. The authors found predominantly positive tendency in the amplitude of Rossby waves and eddies, which suggests that, on average, these events are becoming more energetic. In some regions, the variation in amplitude over 13 yr is comparable to the standard deviation of the data and is statistically significant according to both methods employed in this study. It is plausible that in this case, the energy is transferred from the mean currents to the waves and eddies through barotropic and baroclinic instability processes that are more pronounced in the western boundary current extension regions. If these heat storage patterns and trends are confirmed on longer time series, then it will be justified to argue that the warming trend of the last century provides the energy that amplifies both Rossby waves and mesoscale eddies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compartmentalization is a prerequisite to understand large wetlands that receive water from several sources. However, it faces the heterogeneity in space and time, resulting from physical, chemical and biological processes that are specific to wetlands. The Pantanal is a vast seasonally flooded continental wetland located in the centre of South America. The chemical composition of the waters that supply the Pantanal (70 rivers) has been studied in order to establish a compartmentalization of the wetland based on soil-water interactions. A PCA-based EMMA (End-Members Mixing Analysis) procedure shows that the chemistry of the rivers can be viewed as a mixture of 3 end-members, influenced by lithology and land use, and delimiting large regions. Although the chemical composition of the end-members changed between dry and wet seasons, their spatial distribution was maintained. The results were extended to the floodplain by simple tributary mixing calculation according to the hydrographical network and to the areas of influence for each river when in overflow conditions. The resulting map highlights areas of high geochemical contrast on either side of the river Cuiaba in the north, and of the rivers Aquidauana and Abobral in the south. The PCA-based treatment on a sampling conducted in the Nhecolandia, a large sub region of the Pantanal, allowed the identification and ordering of the processes that control the geochemical variability of the surface waters. Despite an enormous variability in electrical conductivity and pH, all data collected were in agreement with an evaporation process of the Taquari River water, which supplies the region. Evaporation and associated saline precipitations (Mg-calcite, Mg-silicates K-silicates) explained more than 77% of the total variability in the chemistry of the regional surface water sampling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planetary waves are key to large-scale dynamical adjustment in the global ocean as they transfer energy from the east to the west side of oceanic basins; they connect the forcing in the ocean interior with the variability at its boundaries: and they change the local heat content, thus coupling oceanic, atmospheric, and biological processes. Planetary waves, mostly of the first baroclinic mode, are observed as distinctive patterns in global time series of sea surface height anomaly (SSHA) and heat storage. The goal of this study is to compare and validate large-scale SSHA signals from coupled ocean-atmosphere general circulation Model for Interdisciplinary Research on Climate (MIROC) with TOPEX/POSEIDON satellite altimeter observations. The last decade of the models` time series is selected for comparison with the altimeter data. The wave patterns are separated from the meso- and large-scale SSHA signals by digital filters calibrated to select the same spectral bands in both model and altimeter data. The band-wise comparison allows for an assessment of the model skill to simulate the dynamical components of the observed wave field. Comparisons regarding both the seasonal cycle and the Rossby wave Held differ significantly among basins. When carried within the same basin, differences can occur between equal latitudes in opposite hemispheres. Furthermore, at some latitudes the MIROC reproduces biannual, annual and semiannual planetary waves with phase speeds and average amplitudes similar to those observed by the altimeter, but with significant differences in phase. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to assess the spatial and temporal variability of sugarcane yield efficiency and yield gap in the state of Sao Paulo, Brazil, throughout 16 growing seasons, considering climate and soil as main effects, and socioeconomic factors as complementary. An empirical model was used to assess potential and attainable yields, using climate data series from 37 weather stations. Soil effects were analyzed using the concept of production environments associated with a soil aptitude map for sugarcane. Crop yield efficiency increased from 0.42 to 0.58 in the analyzed period (1990/1991 to 2005/2006 crop seasons), and yield gap consequently decreased from 58 to 42%. Climatic factors explained 43% of the variability of sugarcane yield efficiency, in the following order of importance: solar radiation, water deficit, maximum air temperature, precipitation, and minimum air temperature. Soil explained 15% of the variability, considering the average of all seasons. There was a change in the correlation pattern of climate and soil with yield efficiency after the 2001/2002 season, probably due to the crop expansion to the west of the state during the subsequent period. Socioeconomic, biotic and crop management factors together explain 42% of sugarcane yield efficiency in the state of Sao Paulo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to assess the spatial and temporal variability of sugarcane yield efficiency and yield gap in the state of São Paulo, Brazil, throughout 16 growing seasons, considering climate and soil as main effects, and socioeconomic factors as complementary. An empirical model was used to assess potential and attainable yields, using climate data series from 37 weather stations. Soil effects were analyzed using the concept of production environments associated with a soil aptitude map for sugarcane. Crop yield efficiency increased from 0.42 to 0.58 in the analyzed period (1990/1991 to 2005/2006 crop seasons), and yield gap consequently decreased from 58 to 42%. Climatic factors explained 43% of the variability of sugarcane yield efficiency, in the following order of importance: solar radiation, water deficit, maximum air temperature, precipitation, and minimum air temperature. Soil explained 15% of the variability, considering the average of all seasons. There was a change in the correlation pattern of climate and soil with yield efficiency after the 2001/2002 season, probably due to the crop expansion to the west of the state during the subsequent period. Socioeconomic, biotic and crop management factors together explain 42% of sugarcane yield efficiency in the state of São Paulo.