2 resultados para Climate modeling
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Planetary waves are key to large-scale dynamical adjustment in the global ocean as they transfer energy from the east to the west side of oceanic basins; they connect the forcing in the ocean interior with the variability at its boundaries: and they change the local heat content, thus coupling oceanic, atmospheric, and biological processes. Planetary waves, mostly of the first baroclinic mode, are observed as distinctive patterns in global time series of sea surface height anomaly (SSHA) and heat storage. The goal of this study is to compare and validate large-scale SSHA signals from coupled ocean-atmosphere general circulation Model for Interdisciplinary Research on Climate (MIROC) with TOPEX/POSEIDON satellite altimeter observations. The last decade of the models` time series is selected for comparison with the altimeter data. The wave patterns are separated from the meso- and large-scale SSHA signals by digital filters calibrated to select the same spectral bands in both model and altimeter data. The band-wise comparison allows for an assessment of the model skill to simulate the dynamical components of the observed wave field. Comparisons regarding both the seasonal cycle and the Rossby wave Held differ significantly among basins. When carried within the same basin, differences can occur between equal latitudes in opposite hemispheres. Furthermore, at some latitudes the MIROC reproduces biannual, annual and semiannual planetary waves with phase speeds and average amplitudes similar to those observed by the altimeter, but with significant differences in phase. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to identify future distribution areas and propose actions to preserve passion fruit pollination service under a scenario of future climate change. We used four species of Xylocopa bees that are important for passion fruit pollination in Brazilian Tropical Savannas. We also used the known forage plant species (33 species) that are associated with this same area, since passion fruit flowers provide only nectar for bees and only during their blossoming period. We used species distribution modeling to predict the potential areas of occurrence for each bee and plant based on the current day distribution and a future climate scenario (moderate projections of climate change to 2050). We used a geographic information system to classify the models and to analyze the future areas for both groups of species. The current day distribution map showed that Xylocopa and plant species occurred primarily in the southern and central-eastern areas of the Brazilian Tropical Savannas. In the north, Xylocopa species only occurred in a small area between the states of Maranhão and Piauí while forage plant species were only observed in the northern part of the Tocantins State. However, both future scenarios (bees and plants) showed a shift in distribution, with occurrence predominantly detected in the northern areas of Brazilian Tropical Savannas. Possible conservation areas and the use of appropriate agricultural practices were suggested to ensure the maintenance of the bee/plant focal species.