6 resultados para Climate Change|Biological oceanography
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The Atlantic Forest is one of the most important biomes of Brazil. Originally covering approximately 1.5 million of km(2), today this area has been reduced to 12% of its original size. Climate changes may alter the structure and the functioning of this tropical forest. Here we explore how increases in temperature and changes in precipitation distribution could affect dynamics of carbon and nitrogen in coastal Atlantic Forest of the southeast region of Brazil The main conclusion of this article is that the coastal Atlantic Forest has high stocks of carbon and nitrogen above ground, and especially, below ground. An increase in temperature may transform these forests from important carbon sinks to carbon sources by increasing loss of carbon and nitrogen to the atmosphere. However, this conclusion should be viewed with caution because it is based on limited information. Therefore, more studies are urgently needed to enable us to make more accurate predictions.
Resumo:
Native bees are important providers of pollination services, but there are cumulative evidences of their decline. Global changes such as habitat losses, invasions of exotic species and climate change have been suggested as the main causes of the decline of pollinators. In this study, the influence of climate change on the distribution of 10 species of Brazilian bees was estimated with species distribution modelling. We used Maxent algorithm (maximum entropy) and two different scenarios, an optimistic and a pessimistic, to the years 2050 and 2080. We also evaluated the percentage reduction of species habitat based on the future scenarios of climate change through Geographic Information System (GIS). Results showed that the total area of suitable habitats decreased for all species but one under the different future scenarios. The greatest reductions in habitat area were found for Melipona bicolor bicolor and Melipona scutellaris, which occur predominantly in areas related originally to Atlantic Moist Forest. The species analysed have been reported to be pollinators of some regional crops and the consequence of their decrease for these crops needs further clarification. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to identify future distribution areas and propose actions to preserve passion fruit pollination service under a scenario of future climate change. We used four species of Xylocopa bees that are important for passion fruit pollination in Brazilian Tropical Savannas. We also used the known forage plant species (33 species) that are associated with this same area, since passion fruit flowers provide only nectar for bees and only during their blossoming period. We used species distribution modeling to predict the potential areas of occurrence for each bee and plant based on the current day distribution and a future climate scenario (moderate projections of climate change to 2050). We used a geographic information system to classify the models and to analyze the future areas for both groups of species. The current day distribution map showed that Xylocopa and plant species occurred primarily in the southern and central-eastern areas of the Brazilian Tropical Savannas. In the north, Xylocopa species only occurred in a small area between the states of Maranhão and Piauí while forage plant species were only observed in the northern part of the Tocantins State. However, both future scenarios (bees and plants) showed a shift in distribution, with occurrence predominantly detected in the northern areas of Brazilian Tropical Savannas. Possible conservation areas and the use of appropriate agricultural practices were suggested to ensure the maintenance of the bee/plant focal species.
Resumo:
Groundwater has a strategic role in times of climate change mainly because aquifers can provide water for long periods, even during very long and severe drought. The reduction and/or changes on the precipitation pattern can diminish the recharge mainly in unconfined aquifer, causing available groundwater restriction. The expected impact of long-term climate changes on the Brazilian aquifers for 2050 will lead to a severe reduction in 70% of recharge in the Northeast region aquifers (comparing to 2010 values), varying from 30% to 70% in the North region. Data referring to the South and Southeast regions are more favorable, with an increase in the relative recharge values from 30% to 100%. Another expected impact is the increase in demand and the decrease in the surface water availability that will make the population turn to aquifers as its main source of water for public or private uses in many regions of the country. Thus, an integrated use of surface and groundwater must therefore be considered in the water use planning. The solution of water scarcity is based on three factors: society growth awareness, better knowledge on the characteristics of hydraulic and chemical aquifers and effective management actions.
Resumo:
Climate change can be associated with variations in the frequency and intensity of extreme temperatures and precipitation events on the local and regional scales. Along coastal areas, flooding associated with increased occupation has seriously impacted products and services generated by marine life, in particular the biotechnological potential that macroalgae hold. Therefore, this paper analyzes the available information on the taxonomy, ecology and physiology of macroalgae and discusses the impacts of climate change and local stress on the biotechnological potential of Brazilian macroalgae. Based on data compiled from a series of floristic and ecological works, we note the disappearance in some Brazilian regions of major groups of biotechnological interest. In some cases, the introduction of exotic species has been documented, as well as expansion of the distribution range of economically important species. We also verify an increase in the similarities between the Brazilian phycogeographic provinces, although they still remain different. It is possible that these changes have resulted from the warming of South Atlantic water, as observed for its surface in southeastern Brazilian, mainly during the winter. However, unplanned urbanization of coastal areas can also produce similar biodiversity losses, which requires efforts to generate long-term temporal data on the composition, community structure and physiology of macroalgae.
Resumo:
The historical responsibility of countries listed in the Annex I of the Convention on Climate Change has been used extensively as a justification for the lack of action of countries not included in Annex I to reduce their greenhouse gas emissions. We analyzed the contribution of non-Annex I countries to the CO2 emissions in the period 1850 - 2006 to assess their relative contribution to total CO2 emissions. In the period 1980 - 2006 non-Annex I countries represented 44% of the total but this contribution increased in the period 1990 - 2006 to 48%. If we extrapolate present trends to 2020 they will represent 56% in the period 1990 - 2020. The "historical responsibility" of Annex I countries is therefore decreasing. If we take 1990 as the starting year in which the Climate Convention recognized clearly that greenhouse gases are interfering dangerously with the climate system, it becomes very difficult to attribute "blame" and "guilt" to Annex I for their historical contributions. It becomes also quite clear the need of non-Annex I countries to engage with Annex I countries in the effort to reduce emissions. The Copenhagen Accord has no mention of "historical responsibilities".