4 resultados para Classical methods

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of thermohaline properties and currents sampled at an anchor station in the Piacaguera Channel (Santos Estuary) in the austral winter was made in terms of tidal (neap and spring tidal cycles) and non-tidal conditions, with the objective to characterize the stratification, circulation and salt transport due to the fortnightly tidal modulation. Classical methods of observational data analysis of hourly and nearly synoptic observations and analytical simulations of nearly steady-state salinity and longitudinal velocity profiles were used. During the neap tidal cycle the flood (v<0) and ebb (v>0) velocities varied in the range of -0.20 m/s to 0.30 m/s associated with a small salinity variation from surface to bottom (26.4 psu to 30.7 psu). In the spring tidal cycle the velocities increased and varied in the range of -0.40 m/s to 0.45 m/s, but the salinity stratification remained almost unaltered. The steady-state salinity and velocity profiles simulated with an analytical model presented good agreement (Skill near 1.0), in comparison with the observational profiles. During the transitional fortnightly tidal modulation period there was no changes in the channel classification (type 2a - partially mixed and weakly stratified), because the potential energy rate was to low to enhance the halocline erosion. These results, associated with the high water column vertical stability (RiL > 20) and the low estuarine Richardson number (RiE = 1.6), lead to the conclusions: i) the driving mechanism for the estuary circulation and mixing was mainly balanced by the fresh water discharge and the tidal forcing associated with the baroclinic component of the gradient pressure force; ii) there was no changes in the thermohaline and circulation characteristics due to the forthnigtly tidal modulation; and iii) the nearly steady-state of the vertical salinity and velocity profiles were well simulated with a theoretical classical analytical model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many engineering sectors are challenged by multi-objective optimization problems. Even if the idea behind these problems is simple and well established, the implementation of any procedure to solve them is not a trivial task. The use of evolutionary algorithms to find candidate solutions is widespread. Usually they supply a discrete picture of the non-dominated solutions, a Pareto set. Although it is very interesting to know the non-dominated solutions, an additional criterion is needed to select one solution to be deployed. To better support the design process, this paper presents a new method of solving non-linear multi-objective optimization problems by adding a control function that will guide the optimization process over the Pareto set that does not need to be found explicitly. The proposed methodology differs from the classical methods that combine the objective functions in a single scale, and is based on a unique run of non-linear single-objective optimizers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of thermohaline properties and currents sampled at an anchor station in the Piaçaguera Channel (Santos Estuary) in the austral winter was made in terms of tidal (neap and spring tidal cycles) and non-tidal conditions, with the objective to characterize the stratification, circulation and salt transport due to the fortnightly tidal modulation. Classical methods of observational data analysis of hourly and nearly synoptic observations and analytical simulations of nearly steady-state salinity and longitudinal velocity profiles were used. During the neap tidal cycle the flood (v<0) and ebb (v>0) velocities varied in the range of -0.20 m/s to 0.30 m/s associated with a small salinity variation from surface to bottom (26.4 psu to 30.7 psu). In the spring tidal cycle the velocities increased and varied in the range of -0.40 m/s to 0.45 m/s, but the salinity stratification remained almost unaltered. The steady-state salinity and velocity profiles simulated with an analytical model presented good agreement (Skill near 1.0), in comparison with the observational profiles. During the transitional fortnightly tidal modulation period there was no changes in the channel classification (type 2a - partially mixed and weakly stratified), because the potential energy rate was to low to enhance the halocline erosion. These results, associated with the high water column vertical stability (RiL >20) and the low estuarine Richardson number (RiE=1.6), lead to the conclusions: i) the driving mechanism for the estuary circulation and mixing was mainly balanced by the fresh water discharge and the tidal forcing associated with the baroclinic component of the gradient pressure force; ii) there was no changes in the thermohaline and circulation characteristics due to the forthnigtly tidal modulation; and iii) the nearly steady-state of the vertical salinity and velocity profiles were well simulated with a theoretical classical analytical model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME - absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.