33 resultados para Circadian rhythms

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The workers of the stingless bee, Melipona quadrifasciata, assume different tasks during their adult life. Newly emerged individuals remain inside the nest, without contact with the external environment. Maturing workers go to more peripheral regions and only the oldest, the foragers, leave the nest. As this diversity of activities implies different metabolic patterns, oxygen consumption has been measured in workers of three different ages: 24-48 h (nurses), 10-15 days (builders), and older than 25 days (foragers). Oxygen consumption of individually isolated workers was determined by intermittent respirometry, under constant darkness and temperature of 25 +/- 1 degrees C. Sets of 24-h measurements were obtained from individuals belonging to each of the three worker groups. Rhythmicity has been assessed in the daily (24 h) and ultradian (5-14 h) domains. This experimental design allowed detection of endogenous rhythms without the influence of the social group and without inflicting stress on the individuals, as would be caused by their longer isolation from the colony. Significant 24-h rhythms in oxygen consumption were present in nurses, builders and foragers; therefore, workers are rhythmic from the age of 24-48 h. However, the amplitude of the circadian rhythm changed according to age: nurses showed the lowest values, while foragers consistently presented the largest ones, about ten times larger than the amplitude of nurses` respiratory rhythm. Ultradian frequencies were detected for all worker groups, the power and frequencies of which varied little with age. This means that the ultradian strength was relatively larger in nurses and apparently maintains some relationship with the queen`s oviposition episodes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is intended as a proposition of a new concept in the field of chronobiology, External Temporal Organization, a notion complementary to that of the Internal Temporal Organization. We will try to explain the possibility that a set of external elements, that occur in a particular order, can act together as a single synchronizing element of the circadian system. We will see that this is not a zeitgeber, in the classic sense, but a much more complex factor, consisting of several elements that appear in the real environment at different times ( phases), constituting as a whole a powerful temporal frame, closer to the way the stimuli occur in the natural environment, in which the entrainment does not take place just in a specific time of the day.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Access to electricity, granting relative independence of human activity on the dark phase of the day, has been pointed out as an important cause for the absence of seasonal changes in the daily rhythms of humans living in urban areas. Featuring a population of adult Guarani natives living without access to electricity, the present naturalistic study was designed to explore possible effects of different natural photoperiods and temperature on human circadian rhythms. We compared time series of wrist temperature (WT) and motor activity in winter and summer, respectively, 01 24 individuals aged 18 to 80. Twenty-four-hour rhythms of WT showed lower amplitudes and higher mean levels in summer, with no significant seasonal differences in acrophase. In contrast, rest-activity (RA) rhythms exhibited a significantly later rest on-and offset in summer, but no seasonal changes in duration, amplitude and mean level. We furthermore identified a phase advance of both the WT acrophase and rest onset with increasing age of the individuals. We concluded that in our study the effect of different seasons was reflected in the amplitude and mean level of the WT rhythm, as well the onset of nighttime rest, which was delayed in summer. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Members of the subfamily Crotalinae are considered to be essentially nocturnal and most of the data about these snakes have been collected from the field. Information on how nutritional status affects the movement rate and activity patterns is a key point to elucidating the ecophysiology of snakes. In this study, we distributed 28 lancehead Bothrops moojeni into three groups under distinct feeding regimens after a month of fasting. Groups were divided as follows: ingestion of meals weighing (A) 40%, (B) 20%, or (C) 10% of the snake body mass. Groups were monitored for five days before and after food intake and the activity periods and movement rates were recorded. Our results show that B. moojeni is prevalently nocturnal, and the activity peak occurs in the first three hours of the scotophase. After feeding, a significant decrease in activity levels in groups A and B was detected. The current results corroborate previous field data that describe B. moojeni as a nocturnal species with low movement rates. The relationship between motion and the amount of food consumed by the snake may be associated with its hunting strategy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Subterranean organisms are excellent models for chronobiological studies, yet relatively few taxa have been investigated with this focus. Former results were interpreted as a pattern of regression of circadian locomotor activity rhythms in troglobitic (exclusively subterranean) species. In this paper we report results of experiments with cave fishes showing variable degrees of troglomorphism (reduction of eyes, melanic pigmentation and other specializations related to the hypogean life) submitted to light-dark cycles, preceded and followed by several days in constant darkness. Samples from seven species have been monitored in our laboratory for the detection of significant circadian rhythms in locomotor activity: S. typhlops, an extremely troglomophic species, presented the lowest number of significant components in the circadian range (only one individual out of eight in DD1 and three other fish in LD), all weak (low values of spectral power). Higher incidence of circadian components was observed for P. kronei - only one among six studied catfish without significant circadian rhythms under DD1 and DD2; spectral powers were generally high. Intermediate situations were observed for the remaining species, however all of them presented relatively strong significant rhythms under LD. Residual oscillations (circadian rhythms in DD2) were detected in at least part of the studied individuals of all species but S. typhlops, without a correlation with spectral powers of LD rhythms, i.e., individuals exhibiting residual oscillations were not necessarily those with the strongest LD rhythms. In conclusion, the accumulated evidence for troglobitic fishes strongly supports the hypothesis of external, environmental selection for circadian locomotor rhythms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disrupted circadian rhythms are associated with obesity and metabolic alterations, but little is known about the participation of peripheral circadian clock machinery in these processes. The aim of the present study was to analyze RNA expression of clock genes in subcutaneous (SAT) and visceral (VAT) adipose tissues of male and female subjects in AM (morning) and PM (afternoon) periods, and its interactions with body mass index (BMI). Ninety-one subjects (41 +/- 11 yrs of age) presenting a wide range of BMI (21.4 to 48.6 kg/m(2)) were included. SAT and VAT biopsies were obtained from patients undergoing abdominal surgeries. Clock genes expressions were evaluated by qRT-PCR. The only clock gene that showed higher expression (p < .0001) in SAT in comparison to VAT was PER1 of female (372%) and male (326%) subjects. Different patterns of expression between the AM and PM periods were observed, in particular REV-ERBa, which was reduced (p < .05) at the PM period in SAT and VAT of both women and men (women: similar to 53% lower; men: similar to 78% lower), whereas CLOCK expression was not altered. Relationships between clock genes were different in SAT vs. VAT. BMI was negatively correlated with SATPER1 (r = -.549; p = .001) and SATPER2 (r = -.613; p = .0001) and positively with VATCLOCK (r = .541; p = .001) and VATBMAL1 (r = .468; p = .007) only in women. These data suggest that the circadian clock machinery of adipose tissue depots differs between female and male subjects, with a sex-specific effect observed for some genes. BMI correlated with clock genes, but at this moment it is not possible to establish the cause-effect relationship. (Author correspondence: mzanquetta@gmail.com)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

South American subterranean rodents (Ctenomys aff. knighti), commonly known as tuco-tucos, display nocturnal, wheel-running behavior under light-dark (LD) conditions, and free-running periods >24 h in constant darkness (DD). However, several reports in the field suggested that a substantial amount of activity occurs during daylight hours, leading us to question whether circadian entrainment in the laboratory accurately reflects behavior in natural conditions. We compared circadian patterns of locomotor activity in DD of animals previously entrained to full laboratory LD cycles (LD12:12) with those of animals that were trapped directly from the field. In both cases, activity onsets in DD immediately reflected the previous dark onset or sundown. Furthermore, freerunning periods upon release into DD were close to 24 h indicating aftereffects of prior entrainment, similarly in both conditions. No difference was detected in the phase of activity measured with and without access to a running wheel. However, when individuals were observed continuously during daylight hours in a semi-natural enclosure, they emerged above-ground on a daily basis. These day-time activities consisted of foraging and burrow maintenance, suggesting that the designation of this species as nocturnal might be inaccurate in the field. Our study of a solitary subterranean species suggests that the circadian clock is entrained similarly under field and laboratory conditions and that day-time activity expressed only in the field is required for foraging and may not be time-dictated by the circadian pacemaker.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract: Background: Nitric oxide synthase (NOS) is essential for the synthesis of nitric oxide (NO), a non-conventional neurotransmitter with an important role in synaptic plasticity underlying processes of hippocampus-dependent memory and in the regulation of biological clocks and circadian rhythms. Many studies have shown that both the NOS cytosolic protein content and its enzymatic activity present a circadian variation in different regions of the rodent brain, including the hippocampus. The present study investigated the daily variation of NOS enzymatic activity and the cytosolic content of nNOS in the hippocampus of pigeons. Results: Adult pigeons kept under a skeleton photoperiod were assigned to six different groups. Homogenates of the hippocampus obtained at six different times-of-day were used for NOS analyses. Both iNOS activity and nNOS cytosolic protein concentrations were highest during the subjective light phase and lowest in the subjective dark phase of the circadian period. ANOVA showed significant time differences for iNOS enzymatic activity (p < 0.05) and for nNOS protein content (p < 0.05) in the hippocampus. A significant daily rhythm for both iNOS and nNOS was confirmed by analysis with the Cosinor method (p < 0.05). The present findings indicate that the enzymatic activity of iNOS and content of nNOS protein in the hippocampus of pigeons exhibit a daily rhythm, with acrophase values occurring during the behavioral activity phase. Conclusions: The data corroborate the reports on circadian variation of NOS in the mammalian hippocampus and can be considered indicative of a dynamic interaction between hippocampus-dependent processes and circadian clock mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Nitric oxide synthase (NOS) is essential for the synthesis of nitric oxide (NO), a non-conventional neurotransmitter with an important role in synaptic plasticity underlying processes of hippocampus-dependent memory and in the regulation of biological clocks and circadian rhythms. Many studies have shown that both the NOS cytosolic protein content and its enzymatic activity present a circadian variation in different regions of the rodent brain, including the hippocampus. The present study investigated the daily variation of NOS enzymatic activity and the cytosolic content of nNOS in the hippocampus of pigeons. Results: Adult pigeons kept under a skeleton photoperiod were assigned to six different groups. Homogenates of the hippocampus obtained at six different times-of-day were used for NOS analyses. Both iNOS activity and nNOS cytosolic protein concentrations were highest during the subjective light phase and lowest in the subjective dark phase of the circadian period. ANOVA showed significant time differences for iNOS enzymatic activity (p < 0.05) and for nNOS protein content (p < 0.05) in the hippocampus. A significant daily rhythm for both iNOS and nNOS was confirmed by analysis with the Cosinor method (p < 0.05). The present findings indicate that the enzymatic activity of iNOS and content of nNOS protein in the hippocampus of pigeons exhibit a daily rhythm, with acrophase values occurring during the behavioral activity phase. Conclusions: The data corroborate the reports on circadian variation of NOS in the mammalian hippocampus and can be considered indicative of a dynamic interaction between hippocampus-dependent processes and circadian clock mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied locomotor activity rhythms of C57/Bl6 mice under a chronic jet lag (CJL) protocol (ChrA(6/2)), which consisted of 6-hour phase advances of the light-dark schedule (LD) every 2 days. Through periodogram analysis, we found 2 components of the activity rhythm: a short-period component (21.01 +/- 0.04 h) that was entrained by the LD schedule and a long-period component (24.68 +/- 0.26 h). We developed a mathematical model comprising 2 coupled circadian oscillators that was tested experimentally with different CJL schedules. Our simulations suggested that under CJL, the system behaves as if it were under a zeitgeber with a period determined by (24 -[phase shift size/days between shifts]). Desynchronization within the system arises according to whether this effective zeitgeber is inside or outside the range of entrainment of the oscillators. In this sense, ChrA(6/2) is interpreted as a (24 - 6/2 = 21 h) zeitgeber, and simulations predicted the behavior of mice under other CJL schedules with an effective 21-hour zeitgeber. Animals studied under an asymmetric T = 21 h zeitgeber (carried out by a 3-hour shortening of every dark phase) showed 2 activity components as observed under ChrA(6/2): an entrained short-period (21.01 +/- 0.03 h) and a long-period component (23.93 +/- 0.31 h). Internal desynchronization was lost when mice were subjected to 9-hour advances every 3 days, a possibility also contemplated by the simulations. Simulations also predicted that desynchronization should be less prevalent under delaying than under advancing CJL. Indeed, most mice subjected to 6-hour delay shifts every 2 days (an effective 27-hour zeitgeber) displayed a single entrained activity component (26.92 +/- 0.11 h). Our results demonstrate that the disruption provoked by CJL schedules is not dependent on the phase-shift magnitude or the frequency of the shifts separately but on the combination of both, through its ratio and additionally on their absolute values. In this study, we present a novel model of forced desynchronization in mice under a specific CJL schedule; in addition, our model provides theoretical tools for the evaluation of circadian disruption under CJL conditions that are currently used in circadian research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daily rhythmic processes are coordinated by circadian clocks, which are present in numerous central and peripheral tissues. In mammals, two circadian clocks, the food-entrainable oscillator (FEO) and methamphetamine-sensitive circadian oscillator (MASCO), are "black box" mysteries because their anatomical loci are unknown and their outputs are not expressed under normal physiological conditions. In the current study, the investigation of the timekeeping mechanisms of the FEO and MASCO in mice with disruption of all three paralogs of the canonical clock gene, Period, revealed unique and convergent findings. We found that both the MASCO and FEO in Per1(-/-)/Per2(-/-)/Per3(-/-) mice are circadian oscillators with unusually short (similar to 21 h) periods. These data demonstrate that the canonical Period genes are involved in period determination in the FEO and MASCO, and computational modeling supports the hypothesis that the FEO and MASCO use the same timekeeping mechanism or are the same circadian oscillator. Finally, these studies identify Per1(-/-)/Per2(-/-)/Per3(-/-) mice as a unique tool critical to the search for the elusive anatomical location(s) of the FEO and MASCO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of studies to better understand the complex physiological mechanism involved in regulating body weight have been conducted. More specifically, the hormones related to appetite, leptin and ghrelin, and their association to obesity have been a focus of investigation. Circadian patterns of these hormones are a new target of research. The behaviour of these hormones in individuals subject to atypical working times such as shiftwork remains unclear. Shiftwork is characterized by changes in biological rhythms and cumulative circadian phase changes, being associated with high rates of obesity and metabolic syndrome. Truck drivers, who work irregular shifts, frequently present a high prevalence of obesity, which might be associated with work-related factors and/or lifestyle. In this context, the aim of this paper was to discuss the relationship of body mass index, appetite-related hormones and sleep characteristics in truck drivers who work irregular shifts compared with day workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shiftwork-induced sleep deprivation and circadian disruption probably leads to an increase in the production of cytokines and dysregulation of innate immune system, respectively. This project aims evaluating changes in salivary IL-1 beta, cortisol, and melatonin in night workers. Method. Two day and three night healthy workers participated in this study. Sleep was evaluated by actimetry and activity protocols. Saliva was collected at waking and bedtime the last workday and the following two days-off and was analyzed by ELISA. Results. Neither sleep duration nor efficiency showed any association with salivary IL-1beta. IL-1beta levels were higher at waking than at bedtime during working days for all workers, but only one day and one night-worker maintained this pattern and hormone rhythms during days off. For this night worker, melatonin levels were shifted to daytime. A second one presented clear alterations in IL-1beta and hormone rhythms on days-off. Conclusions. Our preliminary results suggest that night work can disturb the variation pattern of salivary IL-1beta. No association of this variation with sleep was observed. It seems that disruption in hormone rhythms interfere with salivary IL-1beta production. IL-1beta production pattern seems to be maintained when rhythms are present, in spite of a shift in melatonin secretion.