22 resultados para Chromium -- Absorption and adsorption

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volatile fatty acids (VFA) absorption and metabolic capacity of rumen and omasum were compared, in vitro. Fragments of rumen wall and omasum laminae were taken from eight adult crossbred bovines. An isolated fragment of the mucosa was fitted in a tissue diffusion chamber. Valeric acid and CrEDTA were added to ruminal fluid and placed on the mucosal side and buffer solution was placed on the serosal side. Fractional absorption rates were measured by exponential VFA:Cr ratio decay over time. Metabolism rate was determined as the difference between VFA absorbed and VFA which appeared on the serosal side over time. Mitotic index was higher in omasum (0.52%) than in rumen epithelium (0.28%). VFA fractional absorption rate was higher in omasum (4.6%/h.cm(2)) than in rumen (0.4%/h.cm(2)). Acetate, propionate, butyrate, and valerate showed similar fractional absorption rates in both fragments. Percentage of metabolized acetate and propionate was lower than butyrate and valerate in both stomach compartments. In the rumen, individual VFA metabolism rates were similar (mean of 7.7 mu mol/h.cm(2)), but in the omasum, valerate (90.0 mu mol/h.cm(2)) was more metabolized than butyrate (59.6 mu mol/h.cm(2)), propionate (69.8 mu mol/h.cm(2)) and acetate (51.7 mu mol/h.cm(2)). Correlation between VFA metabolism and mitotic index was positive in the rumen and in the omasum. In conclusion, VFA metabolism and absorption potential per surface of the omasum is higher than that of the rumen. Variations on rumen and omasum absorption capacities occur in the same way, and there are indications that factors capable of stimulating rumen wall proliferation are similarly capable of stimulating omasum walls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field//configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T-2 electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T-1 -> T-3 and T-1 -> T-5 transitions, supporting that the intermediate triplet state (T-2) decays by internal conversion to T-1. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738757]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volatile fatty acids (VFA) absorption and metabolic capacity of rumen and omasum were compared, in vitro. Fragments of rumen wall and omasum laminae were taken from eight adult crossbred bovines. An isolated fragment of the mucosa was fitted in a tissue diffusion chamber. Valeric acid and CrEDTA were added to ruminal fluid and placed on the mucosal side and buffer solution was placed on the serosal side. Fractional absorption rates were measured by exponential VFA:Cr ratio decay over time. Metabolism rate was determined as the difference between VFA absorbed and VFA which appeared on the serosal side over time. Mitotic index was higher in omasum (0.52%) than in rumen epithelium (0.28%). VFA fractional absorption rate was higher in omasum (4.6%/h.cm²) than in rumen (0.4%/h.cm²). Acetate, propionate, butyrate, and valerate showed similar fractional absorption rates in both fragments. Percentage of metabolized acetate and propionate was lower than butyrate and valerate in both stomach compartments. In the rumen, individual VFA metabolism rates were similar (mean of 7.7 , but in the omasum, valerate (90.0 was more metabolized than butyrate (59.6 propionate (69.8 and acetate (51.7 . Correlation between VFA metabolism and mitotic index was positive in the rumen and in the omasum. In conclusion, VFA metabolism and absorption potential per surface of the omasum is higher than that of the rumen. Variations on rumen and omasum absorption capacities occur in the same way, and there are indications that factors capable of stimulating rumen wall proliferation are similarly capable of stimulating omasum walls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intense phytoplankton blooms were observed along the Patagonian shelf-break with satellite ocean color data, but few in situ optical observations were made in that region. We examine the variability of phytoplankton absorption and particulate scattering coefficients during such blooms on the basis of field data. The chlorophyll-a concentration, [Chla], ranged from 0.1 to 22.3 mg m−3 in surface waters. The size fractionation of [Chla] showed that 80% of samples were dominated by nanophytoplankton (N-group) and 20% by microphytoplankton (M-group). Chlorophyll-specific phytoplankton absorption coefficients at 440 and 676 nm, a*ph(440) and a*ph(676), and particulate scattering coefficient at 660 nm, b*p(660), ranged from 0.018 to 0.173, 0.009 to 0.046, and 0.031 to 2.37 m2 (mg Chla)−1, respectively. Both a*ph(440) and a*ph(676) were statistically higher for the N-group than M-group and also considerably higher than expected from global trends as a function of [Chla]. This result suggests that size of phytoplankton cells in Patagonian waters tends to be smaller than in other regions at similar [Chla]. The phytoplankton cell size parameter, Sf, derived from phytoplankton absorption spectra, proved to be useful for interpreting the variability in the data around the general inverse dependence of a*ph(440), a*ph(676), and b*p(660) on [Chla]. Sf also showed a pattern along the increasing trend of a*ph(440) and a*ph(676) as a function of the ratios of some accessory pigments to [Chla]. Our results suggest that the variability in phytoplankton absorption and scattering coefficients in Patagonian waters is caused primarily by changes in the dominant phytoplankton cell size accompanied by covariation in the concentrations of accessory pigments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex formed by the tetracycline (TC) molecule with the Mg ion is able to prevent the replication of the genetic material in the bacterial ribosome, making an excellent antibiotic. In general, the absorption and emission spectra of TC are very sensitive to the host ions and the pH of the solvent that the set is immersed. However, the theoretical absorption spectrum available in the literature is scarce and limited to simple models that do not consider the fluctuations of the liquid. Our aim is to obtain the electronic absorption spectrum of TC and the complex Mg:TC in the ratio 1:1 and 2:1. Moreover, we analyze the changes in intensity and shifts of the bands in the systems listed. We performed the simulation using the classical Monte Carlo technique with the Lennard-Jones plus Coulomb potential applied to each atom of the both TC molecule and the Mg:TC complexes in water. The electronic absorption spectrum was obtained from the time-dependent density functional theory using different solvent models. In general, we obtained a good qualitative description of the spectra when compared with the experimental results. The Mg atom shifts the first band by 4 nm in our models, in excellent agreement to the experimental result of 4 nm. The second absorption band is found here to be useful for the characterization of the position where the ion attaches to the TC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a device developed on the pilot scale and a simple approach to compare liquid distributor efficiencies. The technique consists basically of analyzing the mass of the liquid collected in 21 vertical pipes measuring 52 mm in internal diameter and 800 mm in length placed in a quadratic arrangement and positioned below the distributor A 50 mm thick acrylic blanket that does not disperse liquids was placed between the distributor and the pipe bank to avoid splashes. Assays were carried out with ladder-type distributors equipped with 4 parallel pipes each for a column measuring 400 nun in diameter as an example of the application. The number (n) of orifices (95, 127, and 159 orifices/m(2)), orifice diameter (d) (2, 3, and 4 mm) and the flowrate (q) (1.2; 1.4; and 1.6 m(3)/h) were varied. The best spread efficiency, which presented the lowest standard deviation, was achieved with 159 orifices, 2 mm and 1.4 m(3)/h. The pressure (p) at the distributor inlet for this condition was only 51000 Pa (0.51 kgf/cm(2)), while the average velocity (v) was 6.3 m/s in each orifice. These results show some limitations of the practical rules used in distributor designs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorene-based systems have shown great potential as components in organic electronics and optoelectronics (organic photovoltaics, OPVs, organic light emitting diodes, OLEDs, and organic transistors, OTFTs). These systems have drawn attention primarily because they exhibit strong blue emission associated with relatively good thermal stability. It is well-known that the electronic properties of polymers are directly related to the molecular conformations and chain packing of polymers. Here, we used three oligofluorenes (trimer, pentamer, and heptamer) as model systems to theoretically investigate the conformational properties of fluorene molecules, starting with the identification of preferred conformations. The hybrid exchange correlation functional, OPBE, and ZINDO/S-CI showed that each oligomer exhibits a tendency to adopt a specific chain arrangement, which could be distinguished by comparing their UV/vis electronic absorption and C-13 NMR spectra. This feature was used to identify the preferred conformation of the oligomer chains in chloroform-cast films by comparing experimental and theoretical UV/vis and C-13 NMR spectra. Moreover, the oligomer chain packing and dynamics in the films were studied by DSC and several solid state NMR techniques, which indicated that the phase behavior of the films may be influenced by the tendency that each oligomeric chain has to adopt a given conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, barium zirconate (BaZrO3) ceramics synthesized by solid state reaction method and sintered at 1670 degrees C for 4 h were characterized by X-ray diffraction (XRD), Rietveld refinement, and Fourier transform infrared (FT-IR) spectroscopy. XRD patterns, Rietveld refinement data and FT-IR spectra which confirmed that BaZrO3 ceramics have a perovskite-type cubic structure. Optical properties were investigated by ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) measurements. UV-vis absorption spectra suggested an indirect allowed transition with the existence of intermediary energy levels within the band gap. Intense visible green PL emission was observed in BaZrO3 ceramics upon excitation with a 350 nm wavelength. This behavior is due to a majority of deep defects within the band gap caused by symmetry breaking in octahedral [ZrO6] clusters in the lattice. The microwave dielectric constant and quality factor were measured using the method proposed by Hakki-Coleman. The dielectric resonator antenna (DRA) was investigated experimentally and numerically using a monopole antenna through an infinite ground plane and Ansoft's high frequency structure simulator software, respectively. The required resonance frequency and bandwidth of DRA were investigated by adjusting the dimension of the same material. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work reports on the thermo-optical study of germanate thin films doped with Au and Ag nanoparticles. Transmission Electron Microscopy images, UV-visible absorption and Micro-Raman scattering evidenced the presence of nanoparticles and the formation of collective excitations, the so called surface plasmons. Moreover, the effects of the metallic nanoparticles in the thermal properties of the films were observed. The thermal lens technique was proposed to evaluate the Thermal Diffusivity (D) of the samples. It furnishes superficial spatial resolution of about 100 mu m, so it is appropriate to study inhomogeneous samples. It is shown that D may change up to a factor 3 over the surface of a film because of the differences in the nanoparticles concentration distribution. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient and water penetration still needs more research. The aim of this work is to analyze the contributions regarding the typical three surface concrete protection systems (coatings, linings and pore blockers) and discusses the results of three pore blockers (sodium silicate) tested in this work. To this end, certain tests were used: one involving permeability mechanism (low pressure-immersion absorption), one involving capillary water absorption, and the last, a migration test used to estimate the effective chloride diffusion coefficient in saturated condition. Results indicated reduction in chloride diffusion coefficients and capillary water absorption, therefore, restrictions to water penetration from external environmental. As a consequence, a reduction of the corrosion kinetics and a control of the chloride ingress are expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monodentate cis-[Ru(phen)(2)(hist)(2)](2+) 1R and the bidentate cis-[Ru(phen)(2)(hist)](2+) 2A complexes were prepared and characterized using spectroscopic (H-1, (H-1-H-1) COSY and (H-1-C-13) HSQC NMR, UV-vis, luminescence) techniques. The complexes presented absorption and emission in the visible region, as well as a tri-exponential emission decay. The complexes are soluble in aqueous and non-aqueous solution with solubility in a buffer solution of pH 7.4 of 1.14 x 10(-3) mol L-1 for (1R + 2A) and 6.43 x 10(-4) mol L-1 for 2A and lipophilicity measured in an aqueous-octanol solution of -1.14 and -0.96, respectively. Photolysis in the visible region in CH3CN converted the starting complexes into cis-[Ru(phen)(2)(CH3CN)(2)](2+). Histamine photorelease was also observed in pure water and in the presence of BSA (1.0 x 10(-6) mol L-1). The bidentate coordination of the histamine to the ruthenium center in relation to the monodentate coordination increased the photosubstitution quantum yield by a factor of 3. Pharmacological studies showed that the complexes present a moderate inhibition of AChE with an IC50 of 21 mu mol L-1 (referred to risvagtini, IC50 181 mu mol L-1 and galantamine IC50 0.006 mu mol L-1) with no appreciable cytotoxicity toward to the HeLa cells (50% cell viability at 925 mu mol L-1). Cell uptake of the complexes into HeLa cells was detected by fluorescence confocal microscopy. Overall, the observation of a luminescent complex that penetrates the cell wall and has low cytotoxicity, but is reactive photochemically, releasing histamine when irradiated with visible light, are interesting features for application of these complexes as phototherapeutic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of Sao Paulo (MASP, population 20 million) accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL) depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 x 10(4)-3.2 x 10(4) cm(-3) frequently exceeding 4 x 10(4) cm-3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC) were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength) varied in the range 12-33 Mm(-1) and 21-64 Mm(-1), respectively. The former one is equal to 1.8-5.0 mu g m(-3) of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (omega(0)) varied in the range 0.59-0.76. Overall, this suggests a top of atmosphere (TOA) warming effect. However, considering the low surface reflectance of urban areas, for the given range of omega(0), the TOA radiative forcing can be either positive or negative for the sources within the MASP. On the average, weekend omega(0) values were 0.074 higher than during weekdays. During 11% of the days, new particle formation (NPF) events occurred. The analysed events growth rates ranged between 9 and 25 nm h(-1). Sulphuric acid proxy concentrations calculated for the site were less than 5% of the concentration needed to explain the observed growth. Thus, other vapours are likely contributors to the observed growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manganese tungstate (MnWO4) nanorods were prepared at room temperature by the co-precipitation method and synthesized after processing in a microwave-hydrothermal (MH) system at 140 degrees C for 6-96 min. These nanorods were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The growth direction, shape and average size distribution of nanorods were observed by means of transmission electron microscopy (TEM) and high resolution TEM (HR-TEM). The optical properties of the nanorods were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy indicate that the MnWO4 precipitate is not a single phase structure while the nanorods synthesized by MH processing have a wolframite-type monoclinic structure without deleterious phases. FT-Raman spectra exhibited the presence of 17 Raman-active modes from 50 to 1,000 cm(-1). TEM and HR-TEM micrographs indicated that the nanorods are aggregated due to surface energy by Van der Waals forces and grow along the [100] direction. UV-vis absorption measurements confirmed non-linear values for the optical band gap (from 3.2 to 2.72 eV), which increased as the MH processing time increased. The structural characterizations indicated that the presence of defects in the MnWO4 precipitate promotes a significant contribution to maximum PL emission, while MnWO4 nanorods obtained by MH processing decrease the PL emission due to the reduction of defects in the lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, the attainment of microsystems that integrate most of the stages involved in an analytical process has raised an enormous interest in several research fields. This approach provides experimental set-ups of increased robustness and reliability, which simplify their application to in-line and continuous biomedical and environmental monitoring. In this work, a novel, compact and autonomous microanalyzer aimed at multiwavelength colorimetric determinations is presented. It integrates the microfluidics (a three-dimensional mixer and a 25 mm length "Z-shape" optical flow-cell), a highly versatile multiwavelength optical detection system and the associated electronics for signal processing and drive, all in the same device. The flexibility provided by its design allows the microanalyzer to be operated either in single fixed mode to provide a dedicated photometer or in multiple wavelength mode to obtain discrete pseudospectra. To increase its reliability, automate its operation and allow it to work under unattended conditions, a multicommutation sub-system was developed and integrated with the experimental set-up. The device was initially evaluated in the absence of chemical reactions using four acidochromic dyes and later applied to determine some key environmental parameters such as phenol index, chromium(VI) and nitrite ions. Results were comparable with those obtained with commercial instrumentation and allowed to demonstrate the versatility of the proposed microanalyzer as an autonomous and portable device able to be applied to other analytical methodologies based on colorimetric determinations.