4 resultados para Chloride diffusion

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient and water penetration still needs more research. The aim of this work is to analyze the contributions regarding the typical three surface concrete protection systems (coatings, linings and pore blockers) and discusses the results of three pore blockers (sodium silicate) tested in this work. To this end, certain tests were used: one involving permeability mechanism (low pressure-immersion absorption), one involving capillary water absorption, and the last, a migration test used to estimate the effective chloride diffusion coefficient in saturated condition. Results indicated reduction in chloride diffusion coefficients and capillary water absorption, therefore, restrictions to water penetration from external environmental. As a consequence, a reduction of the corrosion kinetics and a control of the chloride ingress are expected.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Structural durability is an important criterion that must be evaluated for every type of structure. Concerning reinforced concrete members, chloride diffusion process is widely used to evaluate durability, especially when these structures are constructed in aggressive atmospheres. The chloride ingress triggers the corrosion of reinforcements; therefore, by modelling this phenomenon, the corrosion process can be better evaluated as well as the structural durability. The corrosion begins when a threshold level of chloride concentration is reached at the steel bars of reinforcements. Despite the robustness of several models proposed in literature, deterministic approaches fail to predict accurately the corrosion time initiation due the inherent randomness observed in this process. In this regard, structural durability can be more realistically represented using probabilistic approaches. This paper addresses the analyses of probabilistic corrosion time initiation in reinforced concrete structures exposed to chloride penetration. The chloride penetration is modelled using the Fick's diffusion law. This law simulates the chloride diffusion process considering time-dependent effects. The probability of failure is calculated using Monte Carlo simulation and the first order reliability method, with a direct coupling approach. Some examples are considered in order to study these phenomena. Moreover, a simplified method is proposed to determine optimal values for concrete cover.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the analysis of probabilistic corrosion time initiation in reinforced concrete structures exposed to ions chloride penetration. Structural durability is an important criterion which must be evaluated in every type of structure, especially when these structures are constructed in aggressive atmospheres. Considering reinforced concrete members, chloride diffusion process is widely used to evaluate the durability. Therefore, at modelling this phenomenon, corrosion of reinforcements can be better estimated and prevented. These processes begin when a threshold level of chlorides concentration is reached at the steel bars of reinforcements. Despite the robustness of several models proposed in the literature, deterministic approaches fail to predict accurately the corrosion time initiation due to the inherently randomness observed in this process. In this regard, the durability can be more realistically represented using probabilistic approaches. A probabilistic analysis of ions chloride penetration is presented in this paper. The ions chloride penetration is simulated using the Fick's second law of diffusion. This law represents the chloride diffusion process, considering time dependent effects. The probability of failure is calculated using Monte Carlo simulation and the First Order Reliability Method (FORM) with a direct coupling approach. Some examples are considered in order to study these phenomena and a simplified method is proposed to determine optimal values for concrete cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this preliminary study was to verify the antibacterial potential of cetylpyridinium chloride (CPC) in root canals infected by Enterococcus faecalis. Forty human maxillary anterior teeth were prepared and inoculated with E. faecalis for 60 days. The teeth were randomly assigned to the following groups: 1: Root canal preparation (RCP) + 0.1% CPC with positive-pressure irrigation (PPI, Conventional, NaviTip®); 2: RCP + 0.2% CPC PPI; 3: RCP + 2.5% NaOCl PPI; 4: RCP + 2.5% NaOCl with negative-pressure irrigation system (NPI, EndoVac®); 5: Positive control; and 6: Negative control. Four teeth of each experimental group were evaluated by culture and 4 by scanning electron microscopy (SEM). In all teeth, the root canals were dried and filled with 17% EDTA (pH 7.2) for 3 min for smear layer removal. Samples from the infected root canals were collected and immersed in 7 mL of Letheen Broth (LB), followed by incubation at 37°C for 48 h. Bacterial growth was analyzed by turbidity of culture medium and then observed with a UV spectrophotometer. The irrigating solutions were further evaluated for antimicrobial effect by an agar diffusion test.The statistical data were treated by means, standard deviation, Kruskal-Wallis test and analysis of variance. Significance level was set at 5%. The results showed the presence of E. faecalis after root canal sanitization. The number of bacteria decreased after the use of CPC. In the agar diffusion test, CPC induced large microbial inhibition zones, similar to 2% chlorhexidine and large than 2.5% NaOCl. In conclusion, cetylpyridinium chloride showed antibacterial potential in endodontic infection with E. faecalis.