6 resultados para Chemical purification

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bromelain is an aqueous extract of pineapple that contains a complex mixture of proteases and non-protease components. These enzymes perform an important role in proteolytic modulation of the cellular matrix in numerous physiologic processes, including anti-inflammatory, anti-thrombotic and fibrinolytic functions. Due to the scale of global production of pineapple (Ananas comosus L.), and the high percentage of waste generated in their cultivation and processing, several studies have been conducted on the recovery of bromelain. The aim of this study was to purify bromelain from pineapple wastes using an easy-to-scale-up process of precipitation by ethanol. The results showed that bromelain was recovered by using ethanol at concentrations of 30% and 70%, in which a purification factor of 2.28 fold was achieved, and yielded more than 98% of the total enzymatic activity. This enzyme proved to be susceptible to denaturation after the lyophilization process. However, by using 10% (w/v) glucose as a cryoprotector, it was possible to preserve 90% of the original enzymatic activity. The efficiency of the purification process was confirmed by SDS-PAGE, and native-PAGE electrophoresis, fluorimetry, circular dichroism and FTIR analyzes, showing that this method could be used to obtain highly purified and structurally stable bromelain. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite, D = 7.9 min; (vii) mixture of hydrogen peroxide (2.2%) plus peracetic acid (0.45%), D = 5.5 min. Conclusion The contact time of 180 min of the system with the mixture of H2O2+ peracetic acid, a total theoretical reduction of 6 log10 cycles was attained in the water purified storage tank and distribution loop. The contact time between the water purification system (WPS) and the sanitary agents should be reviewed to reach sufficient bioburden reduction (over 6 log10).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The development of protocols for RNA extraction from paraffin-embedded samples facilitates gene expression studies on archival samples with known clinical outcome. Older samples are particularly valuable because they are associated with longer clinical follow up. RNA extracted from formalin-fixed paraffin-embedded (FFPE) tissue is problematic due to chemical modifications and continued degradation over time. We compared quantity and quality of RNA extracted by four different protocols from 14 ten year old and 14 recently archived (three to ten months old) FFPE breast cancer tissues. Using three spin column purification-based protocols and one magnetic bead-based protocol, total RNA was extracted in triplicate, generating 336 RNA extraction experiments. RNA fragment size was assayed by reverse transcription-polymerase chain reaction (RT-PCR) for the housekeeping gene glucose-6-phosphate dehydrogenase (G6PD), testing primer sets designed to target RNA fragment sizes of 67 bp, 151 bp, and 242 bp. Results Biologically useful RNA (minimum RNA integrity number, RIN, 1.4) was extracted in at least one of three attempts of each protocol in 86–100% of older and 100% of recently archived ("months old") samples. Short RNA fragments up to 151 bp were assayable by RT-PCR for G6PD in all ten year old and months old tissues tested, but none of the ten year old and only 43% of months old samples showed amplification if the targeted fragment was 242 bp. Conclusion All protocols extracted RNA from ten year old FFPE samples with a minimum RIN of 1.4. Gene expression of G6PD could be measured in all samples, old and recent, using RT-PCR primers designed for RNA fragments up to 151 bp. RNA quality from ten year old FFPE samples was similar to that extracted from months old samples, but quantity and success rate were generally higher for the months old group. We preferred the magnetic bead-based protocol because of its speed and higher quantity of extracted RNA, although it produced similar quality RNA to other protocols. If a chosen protocol fails to extract biologically useful RNA from a given sample in a first attempt, another attempt and then another protocol should be tried before excluding the case from molecular analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background A typical purification system that provides purified water which meets ionic and organic chemical standards, must be protected from microbial proliferation to minimize cross-contamination for use in cleaning and preparations in pharmaceutical industries and in health environments. Methodology Samples of water were taken directly from the public distribution water tank at twelve different stages of a typical purification system were analyzed for the identification of isolated bacteria. Two miniature kits were used: (i) identification system (api 20 NE, Bio-Mérieux) for non-enteric and non-fermenting gram-negative rods; and (ii) identification system (BBL crystal, Becton and Dickson) for enteric and non-fermenting gram-negative rods. The efficiency of the chemical sanitizers used in the stages of the system, over the isolated and identified bacteria in the sampling water, was evaluated by the minimum inhibitory concentration (MIC) method. Results The 78 isolated colonies were identified as the following bacteria genera: Pseudomonas, Flavobacterium and Acinetobacter. According to the miniature kits used in the identification, there was a prevalence of isolation of P. aeruginosa 32.05%, P. picketti (Ralstonia picketti) 23.08%, P. vesiculares 12.82%,P. diminuta 11.54%, F. aureum 6.42%, P. fluorescens 5.13%, A. lwoffi 2.56%, P. putida 2.56%, P. alcaligenes 1.28%, P. paucimobilis 1.28%, and F. multivorum 1.28%. Conclusions We found that research was required for the identification of gram-negative non-fermenting bacteria, which were isolated from drinking water and water purification systems, since Pseudomonas genera represents opportunistic pathogens which disperse and adhere easily to surfaces, forming a biofilm which interferes with the cleaning and disinfection procedures in hospital and industrial environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Brazilian propolis type 6 (Atlantic forest, Bahia) is distinct from the other types of propolis especially due to absence of flavonoids and presence of other non-polar, long chain compounds, but presenting good in vitro and in vivo antimicrobial activity. Several authors have suggested that fatty acids found in this propolis might be responsible for its antimicrobial activity; however, so far no evidence concerning this finding has been reported in the literature. The goals of this study were to evaluate the antibacterial activity of the main pure fatty acids in the ethanolic extract and fractions and elucidate the chemical nature of the bioactive compounds isolated from Brazilian propolis type 6. Methods Brazilian propolis type 6 ethanolic extract (EEP), hexane fraction (H-Fr), major fatty acids, and isolated sub-fractions were analyzed using high performance liquid chromatography (HPLC), high resolution gas chromatography with flame ionization detection (HRGC-FID), and gas chromatography-mass spectrometry (GC-MS). Three sub-fractions of H-Fr were obtained through preparative HPLC. Antimicrobial activity of EEP, H-Fr, sub-fractions, and fatty acids were tested against Staphyloccus aureus ATCC 25923 and Streptococcus mutans Ingbritt 1600 using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results EEP and H-Fr inhibited the growth of the microorganisms tested; nevertheless, no antimicrobial activity was found for the major fatty acids. The three sub-fractions (1, 2, and 3) were isolated from H-Fr by preparative HPLC and only sub-fraction 1 showed antimicrobial activity. Conclusion a) The major fatty acids tested were not responsible for the antimicrobial activity of propolis type 6; b) Sub-fraction 1, belonging to the benzophenone class, was responsible for the antimicrobial activity observed in the present study. The identification of the bioactive compound will improve the development of more efficient uses of this natural product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries.