4 resultados para Charge-conformational effects
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Some atomic multipoles (charges, dipoles and quadrupoles) from the Quantum Theory of Atoms in Molecules (QTAIM) and CHELPG charges are used to investigate interactions between a proton and a molecule (F2, Cl2, BF, AlF, BeO, MgO, LiH, H2CO, NH3, PH3, BF3, and CO2). Calculations were done at the B3LYP/6-311G(3d,3p) level. The main aspect of this work is the investigation of polarization effects over electrostatic potentials and atomic multipoles along a medium to long range of interaction distances. Large electronic charge fluxes and polarization changes are induced by a proton mainly when this positive particle approaches the least electronegative atom of diatomic heteronuclear molecules. The search for simple equations to describe polarization on electrostatic potentials from QTAIM quantities resulted in linear relations with r-4 (r is the interaction distance) for many cases. Moreover, the contribution from atomic dipoles to these potentials is usually the most affected contribution by polarization what reinforces the need for these dipoles to a minimal description of purely electrostatic interactions. Finally, CHELPG charges provide a description of polarization effects on electrostatic potentials that is in disagreement with physical arguments for certain of these molecules. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Solvent effects on the one- and two-photon absorption (IPA and 2PA) of disperse orange 3 (DO3) in dimethyl sulfoxide (DMSO) are studied using a discrete polarizable embedding (PE) response theory. The scheme comprises a quantum region containing the chromophore and an atomically granulated classical region for the solvent accounting for full interactions within and between the two regions. Either classical molecular dynamics (MD) or hybrid Car-Parrinello (CP) quantum/classical (QM/MM) molecular dynamics simulations are employed to describe the solvation of DO3 in DMSO, allowing for an analysis of the effect of the intermolecular short-range repulsion, long-range attraction, and electrostatic interactions on the conformational changes of the chromophore and also the effect of the solute-solvent polarization. PE linear response calculations are performed to verify the character, solvatochromic shift, and overlap of the two lowest energy transitions responsible for the linear absorption spectrum of DO3 in DMSO in the visible spectral region. Results of the PE linear and quadratic response calculations, performed using uncorrelated solute-solvent configurations sampled from either the classical or hybrid CP QM/MM MD simulations, are used to estimate the width of the line shape function of the two electronic lowest energy excited states, which allow a prediction of the 2PA cross-sections without the use of empirical parameters. Appropriate exchange-correlation functionals have been employed in order to describe the charge-transfer process following the electronic transitions of the chromophore in solution.
Resumo:
In molecular and atomic devices the interaction between electrons and ionic vibrations has an important role in electronic transport. The electron-phonon coupling can cause the loss of the electron's phase coherence, the opening of new conductance channels and the suppression of purely elastic ones. From the technological viewpoint phonons might restrict the efficiency of electronic devices by energy dissipation, causing heating, power loss and instability. The state of the art in electron transport calculations consists in combining ab initio calculations via Density Functional Theory (DFT) with Non-Equilibrium Green's Function formalism (NEGF). In order to include electron-phonon interactions, one needs in principle to include a self-energy scattering term in the open system Hamiltonian which takes into account the effect of the phonons over the electrons and vice versa. Nevertheless this term could be obtained approximately by perturbative methods. In the First Born Approximation one considers only the first order terms of the electronic Green's function expansion. In the Self-Consistent Born Approximation, the interaction self-energy is calculated with the perturbed electronic Green's function in a self-consistent way. In this work we describe how to incorporate the electron-phonon interaction to the SMEAGOL program (Spin and Molecular Electronics in Atomically Generated Orbital Landscapes), an ab initio code for electronic transport based on the combination of DFT + NEGF. This provides a tool for calculating the transport properties of materials' specific system, particularly in molecular electronics. Preliminary results will be presented, showing the effects produced by considering the electron-phonon interaction in nanoscale devices.
Resumo:
Graphene has received great attention due to its exceptional properties, which include corners with zero effective mass, extremely large mobilities, this could render it the new template for the next generation of electronic devices. Furthermore it has weak spin orbit interaction because of the low atomic number of carbon atom in turn results in long spin coherence lengths. Therefore, graphene is also a promising material for future applications in spintronic devices - the use of electronic spin degrees of freedom instead of the electron charge. Graphene can be engineered to form a number of different structures. In particular, by appropriately cutting it one can obtain 1-D system -with only a few nanometers in width - known as graphene nanoribbon, which strongly owe their properties to the width of the ribbons and to the atomic structure along the edges. Those GNR-based systems have been shown to have great potential applications specially as connectors for integrated circuits. Impurities and defects might play an important role to the coherence of these systems. In particular, the presence of transition metal atoms can lead to significant spin-flip processes of conduction electrons. Understanding this effect is of utmost importance for spintronics applied design. In this work, we focus on electronic transport properties of armchair graphene nanoribbons with adsorbed transition metal atoms as impurities and taking into account the spin-orbit effect. Our calculations were performed using a combination of density functional theory and non-equilibrium Greens functions. Also, employing a recursive method we consider a large number of impurities randomly distributed along the nanoribbon in order to infer, for different concentrations of defects, the spin-coherence length.