2 resultados para Ce3
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The magnetic susceptibility of Pb(1-x)Ce(x)A (A=S, Se and Te) crystals with Ce3+ concentrations 0.006 <= x <= 0.036 was investigated in the temperature range from 2 K to 300 K. The magnetic susceptibility data was found to be consistent with a E-2(5/2) lowest manifold for Ce3+ ions with a crystal-field splitting Delta=E(Gamma(8))-E(Gamma(7)) of about 340 K, 440 K and 540 K for Pb1-xCexTe, Pb1-xCexSe, and Pb1-xCexS, respectively. For all the three compounds the doublet Gamma(7) lies below the Gamma(8) quadruplet which confirms the substitution of Pb2+ by Ce3+ ions in the host crystals. The observed values for the crystal-field splitting are in good agreement with the calculated ones based on the point-charge model. Moreover, the effective Lande factors were determined by X-band (similar to 9.5 GHz), electron paramagnetic measurements (EPR) to be g=1.333, 1.364, and 1.402 for Ce ions in PbA, A = S. Se and Te, respectively. The small difference with the predicted Lande factor g of 10/7 for the Gamma(7) (J=5/2) ground state was attributed to crystal-field admixture. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ceria (CeO2) plays a vital role in emerging technologies for environmental and energy-related applications. The catalytic efficiency of ceria nanoparticles depends on its morphology. In this study, CeO2 nanoparticles were synthesized by a microwave-assisted hydrothermal method under different synthesis temperatures. The samples were characterized by X-ray diffraction, transmission electron microscopy, Raman scattering spectroscopy, electron paramagnetic resonance spectroscopy and by the Brunauer-Emmett-Teller method. The X-ray diffraction and Raman scattering results indicated that all the synthesized samples had a pure cubic CeO2 structure. Rietveld analysis and Raman scattering also revealed the presence of structural defects due to an associated reduction in the valence of the Ce4+ ions to Ce3+ ions caused by an increasing molar fraction of oxygen vacancies. The morphology of the samples was controlled by varying the synthesis temperature. The TEM images show that samples synthesized at 80 degrees C consisted of spherical particles of about 5 nm, while those synthesized at 120 degrees C presented a mix of spherical and rod-like nanoparticles and the sample synthesized at 160 degrees C consisted of nanorods with 10 nm average diameter and 70 nm length. The microwave-assisted method proved to be highly efficient for the synthesis of CeO2 nanoparticles with different morphologies.