2 resultados para Cavity perturbation technique

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: This study evaluated the influence of the cavity configuration factor ("C-Factor") and light activation technique on polymerization contraction forces of a Bis-GMA-based composite resin (Charisma, Heraeus Kulzer). Material and Methods: Three different pairs of steel moving bases were connected to a universal testing machine (Emic DL 500): groups A and B - 2x2 mm (CF=0.33), groups C and D - 3x2 mm (CF=0.66), groups E and F - 6x2 mm (CF=1.5). After adjustment of the height between the pair of bases so that the resin had a volume of 12 mm(3) in all groups, the material was inserted and polymerized by two different methods: pulse delay (100 mW/cm(2) for 5 s, 40 s interval, 600 mW/cm(2) for 20 s) and continuous pulse (600 mW/cm(2) for 20 s). Each configuration was light cured with both techniques. Tensions generated during polymerization were recorded by 120 s. The values were expressed in curves (Force(N) x Time(s)) and averages compared by statistical analysis (ANOVA and Tukey's test, p<0.05). Results: For the 2x2 and 3x2 bases, with a reduced C-Factor, significant differences were found between the light curing methods. For 6x2 base, with high C-Factor, the light curing method did not influence the contraction forces of the composite resin. Conclusions: Pulse delay technique can determine less stress on tooth/restoration interface of adhesive restorations only when a reduced C-Factor is present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To assess the effects of rapid maxillary expansion on facial morphology and on nasal cavity dimensions of mouth breathing children by acoustic rhinometry and computed rhinomanometry. METHODS: Cohort; 29 mouth breathing children with posterior crossbite were evaluated. Orthodontic and otorhinolaryngologic documentation were performed at three different times, i.e., before expansion, immediately after and 90 days following expansion. RESULTS: The expansion was accompanied by an increase of the maxillary and nasal bone transversal width. However, there were no significant differences in relation to mucosal area of the nose. Acoustic rhinometry showed no difference in the minimal cross-sectional area at the level of the valve and inferior turbinate between the periods analyzed, although rhinomanometry showed a statistically significant reduction in nasal resistance right after expansion, but were similar to pre-treatment values 90 days after expansion. CONCLUSION: The maxillary expansion increased the maxilla and nasal bony area, but was inefficient to increase the nasal mucosal area, and may lessen the nasal resistance, although there was no difference in nasal geometry. Significance: Nasal bony expansion is followed by a mucosal compensation.