4 resultados para Cardiac wall
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
BACKGROUND: Because of their similar visual appearance, differentiation of left ventricular thrombotic material and myocardial wall can be difficult in contrast-enhanced coronary computed tomography (CT) angiography. OBJECTIVE: We identified typical thrombi attenuation of left ventricular thrombi with the use of CT measurement. METHODS: Over a time period of 6 years; we retrospectively identified 31 patients who showed a left ventricular thrombus in CT angiography datasets. Patients underwent routine contrast cardiac CT to investigate coronary artery disease. CT attenuation of each thrombus was assessed in the 4-chamber view. CT densities were also determined in the ascending aorta, left ventricle, and myocardial wall both in the mid-septal and mid-lateral segments. The mean CT attenuation of thrombi and the difference between attenuation in thrombi, left ventricular cavity, and myocardial wall were determined. The ratio of attenuation values in thrombus versus aorta and myocardium versus aorta were also determined. RESULTS: Mean (+/- SD) CT attenuation of all left ventricular thrombi in 31 patients was 43.2 +/- 15.3 HU (range, 25-80 HU). Mean CT densities of septal and lateral myocardial wall were 102.9 +/- 23.1 HU (range, 63-155 HU) and 99.3 +/- 28.7 HU (range, 72-191 HU), respectively, and were thus significantly higher than the CT attenuation of thrombi (P < 0.001). A threshold of 65 HU yielded a sensitivity, specificity, and positive and negative predictive values of 94%, 97%, 94%, and 97%, respectively, to differentiate thrombus from the myocardial wall. The mean ratio between CT attenuation of thrombus and CT attenuation within the ascending aorta was 0.11 +/- 0.05 (range, 0.04-0.23), which was significantly lower compared with the mean ratio between CT attenuation of the myocardial wall and the CT attenuation within the ascending aorta. CONCLUSION: CT attenuation within left ventricular thrombi was significantly lower than myocardial attenuation in CT angiography datasets. Assessment of CT attenuation may contribute to the differentiation of thrombi. (C) 2012 Society of Cardiovascular Computed Tomography. All rights reserved.
Resumo:
Patient, 75 years-old, with free wall rupture of the right ventricle, corrected with prolene 3.0 points anchored in bovine pericardium patch, promoting the closure of the rupture. The patient was discharged on the 59th day after surgery in good clinical ans laboratorial conditions.
Resumo:
Abstract Background: Left ventricular free wall rupture occurs in up to 10% of the in-hospital deaths following myocardial infarction. It is mainly associated with posterolateral myocardial infarction and its antemortem diagnosis is rarely made. Contrast echocardiography has been increasingly used for the evaluation of myocardial perfusion in patients with acute myocardial infarction, with important prognostic implications. In this case, we reported its use for the detection of a mechanical complication following myocardial infarction. Case presentation: A 50-year-old man with acute myocardial infarction in the lateral wall underwent myocardial contrast echocardiography for the evaluation of myocardial perfusion in the third day post-infarction. A perfusion defect was detected in lateral and inferior walls as well as the presence of contrast extrusion from the left ventricular cavity into the myocardium, forming a serpiginous duct extending from the endocardium to the epicardial region of the lateral wall, without communication with the pericardial space. Magnetic resonance imaging confirmed the diagnosis of impending rupture of the left ventricular free wall. While waiting for cardiac surgery, patient presented with cardiogenic shock and died. Anatomopathological findings were consistent with acute myocardial infarction in the lateral wall and a left ventricular free wall rupture at the infarct site. Conclusion: This case illustrates the early diagnosis of left ventricular free wall rupture by contrast echocardiography. Due to its ability to be performed at bedside this modality of imaging has the potential to identify this catastrophic condition in patients with acute myocardial infarction and help to treat these patients with emergent surgery.
Resumo:
Abstract Background Heart chambers rupture in blunt trauma is uncommon and is associated with a high mortality. The determinant factors, and the incidence of isolated heart chambers rupture remains undetermined. Isolated rupture of the right atrium appendage (RAA) is very rare, with 8 cases reported in the reviewed literature. The thin wall of the RAA has been presumed to render this chamber more prone to rupture in blunt trauma. Objective To report a case of isolated RAA rupture in blunt trauma, and to compare right atrium (RA) and RAA wall thickness in a necropsy study. Methods The thickness of RA and RAA wall of hearts from cadavers of fatal penetrating head trauma victims was measured. Our case of isolated RAA rupture is presented. The main findings of the 8 cases reported in the literature, and the findings of our case, were organized in a table. Result The comparison of the data showed that wall thickness of the RAA (0.53 ± 0.33 mm) was significantly thinner than that of RA (1.11 ± 0.42 mm) (p < 0.05). Comments In all these 9 cases of isolated RAA rupture, cardiac tamponade occurred, RAA rupture was diagnosed intraoperatively and sutured, and the patients survived. Main mechanisms hypothesized for heart chamber rupture include mechanical compression coincident with phases of cardiac cycle, leading to high hydrostatic pressure inside the chamber. Published series include numerous cases of RA rupture, and only a few cases of RAA rupture. Conclusion Thus, our data suggests that wall thickness is not a determinant factor for RA or RAA rupture in blunt trauma.