4 resultados para Capybara Hydrochoerus-hydrochaeris
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Brazilian spotted fever (BSF), caused by the bacterium Rickettsia rickettsii, is the deadliest spotted fever of the world. In most of the BSF-endemic areas, capybaras (Hydrochoerus hydrochaeris) are the principal host for the tick Amblyomma cajennense, which is the main vector of BSF. In 2012, a BSF case was confirmed in a child that was bitten by ticks in a residential park area inhabited by A. cajennense-infested capybaras in Itú municipality, southeastern Brazil. Host questing A. cajennense adult ticks were collected in the residential park and brought alive to the laboratory, where they were macerated and intraperitoneally inoculated into guinea pigs. A tick-inoculated guinea pig that presented high fever was euthanized and its internal organs were macerated and inoculated into additional guinea pigs (guinea pig passage). Tissue samples from guinea pig passages were also used to inoculate Vero cells through the shell vial technique. Infected cells were used for molecular characterization of the rickettsial isolate through PCR and DNA sequencing of fragments of three rickettsial genes (gltA, ompA, and ompB). Blood serum samples were collected from 172 capybaras that inhabited the residential park. Sera were tested through the immunofluorescence assay using R. rickettsii antigen. A tick-inoculated guinea pig presented high fever accompanied by scrotal reactions (edema and marked redness). These signs were reproduced by consecutive guinea pig passages. Rickettsia was successfully isolated in Vero cells that were inoculated with brain homogenate derived from a 3rd passage-febrile guinea pig. Molecular characterization of this rickettsial isolate (designated as strain ITU) yielded DNA sequences that were all 100% identical to corresponding sequences of R. rickettsii in Genbank. A total of 83 (48.3%) out of 172 capybaras were seroreactive to R. rickettsii, with endpoint titers ranging from 64 to 8192. A viable isolate of R. rickettsii was obtained from the tick A. cajennense, comprising the first viable R. rickettsi isolate from this tick species during the last 60 years. Nearly half of the capybara population of the residential park was seroreactive to R. rickettsii, corroborating the findings that the local A. cajennense population was infected by R. rickettsii.
Resumo:
During 2008D2010, ticks were collected from road-killed wild animals within the Serra dos Orgaos National Park area in the state of Rio de Janeiro, Brazil. In total, 193 tick specimens were collected, including Amblyomma dubitatum Neumann and Amblyomma cajennense (F.) from four Hydrochoerus hydrochaeris (L.), Amblyomma calcaratum Neumann and A. cajennense from four Tamandua tetradactyla (L.), Amblyomma aureolatum (Pallas) and A. cajennense from five Cerdocyon thous L., Amblyomma longirostre (Koch) from one Sphiggurus villosus (Cuvier), Amblyomma varium Koch from three Bradypus variegatus Schinz, and A. cajennense from one Buteogallus meridionalis (Latham). Molecular analyses based on polymerase chain reaction targeting two rickettsial genes (gltA and ompA) on tick DNA extracts showed that 70.6% (12/17) of the A. dubitatum adult ticks, and all Amblyomma sp. nymphal pools collected from capybaras were shown to contain rickettsial DNA, which after DNA sequencing, revealed to be 100% identical to the recently identified Rickettsia sp. strain Pampulha from A. dubitatum ticks collected in the state of Minas Gerais, Brazil. Phylogenetic analysis with concatenated sequences (gltA-ompA) showed that our sequence from A. dubitatum ticks, referred to Rickettsia sp. strain Serra dos Orgaos, segregated under 99% bootstrap support in a same cluster with Old World rickettsiae, namely R. tamurae, R. monacensis, and Rickettsia sp. strain 774e. Because A. dubitatum is known to bite humans, the potential role of Rickettsia sp. strain Serra dos Orgaos as human pathogen must be taken into account, because both R. tamurae and R. monacencis have been reported infecting human beings.
Resumo:
The aim of this study was to evaluate the phases of sexual development and spermatogenesis of Spix's yellow-toothed cavy (Galea spixii) based on analyses of the structural components of the testes. The testes of animals from 0 to 150 days of age were collected by orchiectomy, weighed, and processed for analysis by light microscopy. At 45 days of age, spermatozoa were seen in the tubular lumen. Spermatogenesis was not established in animals from 45 to 150 days of age. The stages of sexual development may be classified into the following phases: from birth to the age of 15 days (immature); 30 days of age (prepubertal); 45-105 days of age (pubertal); and 120 and 150 days of age (postpubertal). This is the first study to address the male reproductive biology of Spix's yellow-toothed cavy.
Resumo:
Background: Placental characters vary among Xenarthra, one of four supraordinal clades of Eutheria. Armadillos are known for villous, haemochorial placentas similar to humans. Only the nine-banded armadillo has been well studied so far. Methods: Placentas of three species of armadillos were investigated by means of histology, immunohistochemistry including proliferation marker, and transmission and scanning electron microscopy. Results: The gross anatomy differed: Euphractus sexcinctus and Chaetophractus villosus had extended, zonary placentas, whereas Chaetophractus vellerosus had a disk. All taxa had complex villous areas within the maternal blood sinuses of the endometrium. Immunohistochemistry indicated the validity of former interpretations that the endothelium of the sinuses was largely intact. Tips of the villi and the columns entering the maternal tissue possessed trophoblast cell clusters with proliferation activity. Elsewhere, the feto-maternal barrier was syncytial haemochorial with fetal vessels near the surface. Conclusions: Differences among armadillos occurred in regard to the extension of the placenta, whereas the fine structure was similar. Parallels to the human suggest that armadillos are likely to be useful animal models for human placentation.