9 resultados para Canopy cover
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Regeneration microsites are characterized by diverse combinations of attributes which assure the best conditions for seed germination and seedling establishment. By understanding these attributes, we can contribute to determining better management methodologies for reestablishing ecological process in sites under restoration. Thus, we sought to characterize and differentiate the micro-site conditions of restoration plantings to indentify likely physical-chemical limitations for the establishment of native tree species in the forest understory. This study was carried out in reforestation plantings with different ages (10, 22 and 55 years). The physical-chemical characterization of the micro-site of regeneration of the study areas was carried out by evaluating the soil compression level, porosity, humidity, organic matter and nutrients content and granulometry, as well as litter dry mass and canopy cover. An increase on the canopy cover and soil porosity, humidity, clay and organic matter content were observed in the oldest restored areas, as well as a decrease in soil compression. Thus, these findings demonstrated that the evaluated microsite properties are in process of restoration. Therefore, microsite conditions for seedling establishment become even more similar to reference ecosystems as restoration planting evolve.
Resumo:
Calcium carbonate production by marine organisms is an essential process in the global budget of CO32-, and coralline reefs are the most important benthic carbonate producers. Crustose coralline algae (CCA) are well recognized as the most important carbonate builders in the tropical Brazilian continental shelf, forming structural reefs and extensive rhodolith beds. However, the distribution of CCA beds, as well as their role in CO32- mineralization in mesophotic communities and isolated carbonate banks, is still poorly known. To characterize the bottom features of several seamount summits in the Southwestern Atlantic (SWA), side-scan sonar records, remotely operated vehicle imagery, and benthic samples with mixed-gas scuba diving were acquired during two recent research cruises (March 2009 and February 2011). The tops of several seamounts within this region are relatively shallow (similar to 60 m), flat, and dominated by rhodolith beds (Vitoria, Almirante Saldanha, Davis, and Jaseur seamounts, as well as the Trindade Island shelf). On the basis of abundance, dimensions, vitality, and growth rates of CCA nodules, a mean CaCO3 production was estimated, ranging from 0.4 to 1.8 kg m(-2) y(-1) with a total production reaching 1.5 x 10(-3) Gt y(-1). Our results indicate that these SWA seamount summits provide extensive areas of shallow reef area and represent 0.3% of the world's carbonate banks. The importance of this habitat has been highly neglected, and immediate management needs must be fulfilled in the short term to ensure long-term persistence of the ecosystem services provided by these offshore carbonate realms.
Resumo:
The flow of sediment from cropped land is the main pollutant of water sources in rural areas. Due to this fact, it is necessary to develop and implement technologies that will reduce water and sediment discharges. Accordingly, an experiment was conducted in the Department of Biosystems Engineering - ESALQ / USP, Piracicaba - SP with the objective to evaluate the effect of different soil cover (bean, grass and bare ground) and erosion control practices (wide base terraces and infiltration furrows in slopes (no practices to control erosion)) while measuring water losses in runoff. The statistical design adopted was randomized blocks in a 3x3 factorial scheme resulting in 9 treatments with 3 replicates (blocks). The period of rainfall data collection was December 6, 2007 to April 11, 2008. A 21.1 cm diameter rain gauge was installed in the experimental area. Terraces were the most efficient practices for reducing erosion losses in the treatments with infiltration furrows being better than the control treatment. Bean was more effective than grass in reducing erosion. Bare ground was the least efficient.
Resumo:
The use of cover crops affects the support capacity of soil and least limiting water range to crop growth. The objective of this study was to quantify preconsolidation pressure (sigma(p)), compression index (CI) and least limiting water range (LLWR) of a reclaimed coal mining soil under different cover crops, in Candiota, RS, Brazil. In the experiment, with randomized blocks design and four replicates, the following cover crops (treatments) were evaluated: Hemarthria altissima (Poir.) Stapf & C.E. Hubbard, treatment 1 (T1), Paspalum notatum Flugge, treatment 4 (T4), Cynodon dactilon (L) Pers., treatment 5 (T5), control Brachiaria brizantha (Hochst.) Stapf, treatment 7 (T7) and without cover crop treatment 8 (reference treatment, T8). Soil compression and least limiting water range were evaluated with undisturbed samples at a depth of 0.00-0.05 m. In order to evaluate parameters of soil compressibility, the soil samples were saturated with water and subjected to -10 kPa matric potential and then submitted to a uniaxial compression test under the following pressures: 25, 50, 100, 200, 400, 800 and 1600 kPa. Cover crops decreased the preconsolidation pressure of constructed soils after coal mining and the greatest soil reclamation was obtained with the H. altissima cover crop, where the lowest degree of soil compactness and soil load capacity were observed. Soils cultivated under H. altissima or B. brizantha presented the highest least limiting water range and these two cover crops generated similar soil critical bulk density obtained by least limiting water range and soil load support capacity. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Atlantic Forest is one of the most threatened tropical biomes, with much of the standing forest in small (less than 50 ha), disturbed and isolated patches. The pattern of land-use and land-cover change (LULCC) which has resulted in this critical scenario has not yet been fully investigated. Here, we describe the LULCC in three Atlantic Forest fragmented landscapes (Sao Paulo, Brazil) between 1960-1980s and 1980-2000s. The three studied landscapes differ in the current proportion of forest cover, having 10%, 30% and 50% respectively. Between the 1960s and 1980s. forest cover of two landscapes was reduced while the forest cover in the third landscape increased slightly. The opposite trend was observed between the 1980s and 2000s: forest regeneration was greater than deforestation at the landscapes with 10% and 50% of forest cover and, as a consequence, forest cover increased. By contrast, the percentage of forest cover at the landscape with 30% of forest cover was drastically reduced between the 1980s and 2000s. LULCC deviated from a random trajectory, were not constant through time in two study landscapes and were not constant across space in a given time period. This landscape dynamism in single locations over small temporal scales is a key factor to be considered in models of LULCC to accurately simulate future changes for the Atlantic Forest. In general, forest patches became more isolated when deforestation was greater than forest regeneration and became more connected when forest regeneration was greater than deforestation. As a result of the dynamic experienced by the study landscapes, individual forest patches currently consist of a mosaic of different forest age classes which is likely to impact bio-diversity. Furthermore, landscape dynamics suggests the beginning of a forest transition in some Atlantic Forest regions, what could be of great importance for biodiversity conservation due to the potential effects of young secondary forests in reducing forest isolation and maintaining a significant amount of the original biodiversity. (C) 2012 Elsevier B.V. All rights reserved.
Disproportionate single-species contribution to canopy-soil nutrient flux in an Amazonian rainforest
Resumo:
Rainfall, throughfall and stemflow were monitored on an event basis in an undisturbed open tropical rainforest with a large number of palm trees located in the southwestern Amazon basin of Brazil. Stemflow samples were collected from 24 trees with a diameter at breast height (DBH) > 5 cm, as well as eight young and four full-grown babassu palms (Attalea speciosa Mart.) for 5 weeks during the peak of the wet season. We calculated rainfall, throughfall and stemflow concentrations and fluxes of Na+, K+, Ca2+, Mg2+,, Cl-, SO42-, NO3- and H+ and stemflow volume-weighted mean concentrations and fluxes for three size classes of broadleaf trees and three size classes of palms. The concentrations of most solutes were higher in stemflow than in rainfall and increased with increasing tree and palm size. Concentration enrichments from rainfall to stemflow and throughfall were particularly high (81-fold) for NO3-. Stemflow fluxes of NO3- and H+ exceeded throughfall fluxes but stemflow fluxes of other solutes were less than throughfall fluxes. Stemflow solute fluxes to the forest soil were dominated by fluxes on babassu palms, which represented only 4% of total stem number and 10% of total basal area. For NO3-, stemflow contributed 51% of the total mass of nitrogen delivered to the forest floor (stemflow + throughfall) and represented more than a 2000-fold increase in NO3- flux compared what would have been delivered by rainfall alone on the equivalent area. Because these highly localized fluxes of both water and NO3- persist in time and space, they have the potential to affect patterns of soil moisture, microbial populations and other features of soil biogeochemistry conducive to the creation of hotspots for nitrogen leaching and denitrification, which could amount to an important fraction of total ecosystem fluxes. Because these hotspots occur over very small areas, they have likely gone undetected in previous studies and need to be considered as an important feature of the biogeochemistry of palm-rich tropical forest. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Empirical approaches and, more recently, physical approaches, have grounded the establishment of logical connections between radiometric variables derived from remote data and biophysical variables derived from vegetation cover. This study was aimed at evaluating correlations of dendrometric and density data from canopies of Eucalyptus spp., as collected in Capao Bonito forest unit, with radiometric data from imagery acquired by the TM/Landsat-5 sensor on two orbital passages over the study site (dates close to field data collection). Results indicate that stronger correlations were identified between crown dimensions and canopy height with near-infrared spectral band data (rho(s)4), irrespective of the satellite passage date. Estimates of spatial distribution of dendrometric data and canopy density (D) using spectral characterization were consistent with the spatial distribution of tree ages during the study period. Statistical tests were applied to evaluate performance disparities of empirical models depending on which date data were acquired. Results indicated a significant difference between models based on distinct data acquisition dates.
Resumo:
The expansion of soybean cultivation into the Amazon in Brazil has potential hydrological effects at local to regional scales. To determine the impacts of soybean agriculture on hydrology, a comparison of net precipitation (throughfall, stemflow) in undisturbed tropical forest and soybean fields on the southern edge of the Amazon Basin in the state of Mato Grosso is needed. This study measured throughfall with troughs and stemflow with collar collectors during two rainy seasons. The results showed that in forest 91.6% of rainfall was collected as throughfall and 0.3% as stemflow, while in soybean fields with two-month old plants, 46.2% of rainfall was collected as throughfall and 9.0% as stemflow. Hence, interception of precipitation in soybean fields was far greater than in intact forests. Differences in throughfall, stemflow and net precipitation were found to be mainly associated with differences in plant structure and stem density in transitional forest and soybean cropland. Because rainfall interception in soybean fields is higher than previously believed and because both the area of cropland and the frequency of crop cycles (double cropping) are increasing rapidly, interception needs to be reconsidered in regional water balance models when consequences of land cover changes are analyzed in the Amazon soybean frontier region. Based on the continued expansion of soybean fields across the landscape and the finding that net precipitation is lower in soy agriculture, a reduction in water availability in the long term can be assumed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Theoretical and empirical studies demonstrate that the total amount of forest and the size and connectivity of fragments have nonlinear effects on species survival. We tested how habitat amount and configuration affect understory bird species richness and abundance. We used mist nets (almost 34,000 net hours) to sample birds in 53 Atlantic Forest fragments in southeastern Brazil. Fragments were distributed among 3 10,800-ha landscapes. The remaining forest in these landscapes was below (10% forest cover), similar to (30%), and above (50%) the theoretical fragmentation threshold (approximately 30%) below which the effects of fragmentation should be intensified. Species-richness estimates were significantly higher (F = 3715, p = 0.00) where 50% of the forest remained, which suggests a species occurrence threshold of 30-50% forest, which is higher than usually occurs (<30%). Relations between forest cover and species richness differed depending on species sensitivity to forest conversion and fragmentation. For less sensitive species, species richness decreased as forest cover increased, whereas for highly sensitive species the opposite occurred. For sensitive species, species richness and the amount of forest cover were positively related, particularly when forest cover was 30-50%. Fragment size and connectivity were related to species richness and abundance in all landscapes, not just below the 30% threshold. Where 10% of the forest remained, fragment size was more related to species richness and abundance than connectivity. However, the relation between connectivity and species richness and abundance was stronger where 30% of the landscape was forested. Where 50% of the landscape was forested, fragment size and connectivity were both related to species richness and abundance. Our results demonstrated a rapid loss of species at relatively high levels of forest cover (30-50%). Highly sensitive species were 3-4 times more common above the 30-50% threshold than below it; however, our results do not support a unique fragmentation threshold.